2,337
Views
35
CrossRef citations to date
0
Altmetric
Original Report

Magnetic order multilayering in FeRh thin films by He-Ion irradiation

ORCID Icon, , , , , & show all
Pages 106-112 | Received 31 Aug 2017, Published online: 15 Nov 2017

References

  • Wadley P, Howells B, Železný J, et al. Electrical switching of an antiferromagnet. Science. 2016;351:587–590. doi: 10.1126/science.aab1031
  • Marti X, Fina I, Frontera C, et al. Room-temperature antiferromagnetic memory resistor. Nat Mater. 2014;13:367–374. doi: 10.1038/nmat3861
  • Lee Y, Liu ZQ, Heron JT, et al. Large resistivity modulation in mixed-phase metallic systems. Nat Commun. 2015;6:5959. doi: 10.1038/ncomms6959
  • Cherifi RO, Ivanovskaya V, Phillips LC, et al. Electric-field control of magnetic order above room temperature. Nat Mater. 2014;13:345–351. doi: 10.1038/nmat3870
  • Le Graët C, Charlton TR, McLaren M, et al. Temperature controlled motion of an antiferromagnet- ferromagnet interface within a dopant-graded FeRh epilayer. APL Mater. 2015;3:1–8. doi: 10.1063/1.4907282
  • Barua R, Jimenez-Villacorta F, Shield JE, et al. Nanophase stability in a granular FeRh-Cu system. J Appl Phys. 2013;113:1–3.
  • Bennett SP, Wong AT, Glavic A, et al. Giant controllable magnetization changes induced by structural phase transitions in a metamagnetic artificial multiferroic. Sci Rep. 2016;6:K79.
  • Bennett SP, Ambaye H, Lee H, et al. Direct evidence of anomalous interfacial magnetization in metamagnetic Pd doped FeRh thin films. Sci Rep. 2015;5:9142. doi: 10.1038/srep09142
  • Kinane CJ, Loving M, De Vries MA, et al. Observation of a temperature dependent asymmetry in the domain structure of a Pd-doped FeRh epilayer. New J Phys. 2014;113:1–6.
  • Barua R, Jiang X, Jimenez-Villacorta F, et al. Tuning the magnetostructural phase transition in FeRh nanocomposites. J Appl Phys. 2013;113:23910. doi: 10.1063/1.4774282
  • Aschauer U, Braddell R, Brechbühl SA, et al. Strain-induced structural instability in FeRh. Phys Rev B. 2016;94:1–10. doi: 10.1103/PhysRevB.94.014109
  • Xie Y, Zhan Q, Shang T, et al. Effect of epitaxial strain and lattice mismatch on magnetic and transport behaviors in metamagnetic FeRh thin films. AIP Adv. 2017;7:56314. doi: 10.1063/1.4976301
  • Taniyama T. Electric-field control of magnetism via strain transfer across ferromagnetic/ferroelectric interfaces. J Phys Condens Matter. 2015;27:504001. doi: 10.1088/0953-8984/27/50/504001
  • Uhlíř V, Arregi JA, Fullerton EE. Colossal magnetic phase transition asymmetry in mesoscale FeRh stripes. Nat Commun. 2016;7:13113. doi: 10.1038/ncomms13113
  • Heidarian A, Bali R, Grenzer J, et al. Tuning the antiferromagnetic to ferromagnetic phase transition in FeRh thin films by means of low-energy/low fluence ion irradiation. Nucl Instrum Methods Phys Res Sect B Beam Interact. Mater. Atoms. 2015;358:251–254. doi: 10.1016/j.nimb.2015.06.027
  • Koide T, Satoh T, Kohka M, et al. Magnetic patterning of FeRh thin films by energetic light ion microbeam irradiation. Jpn J Appl Phys. 2014;53:05FC06. doi: 10.7567/JJAP.53.05FC06
  • Menéndez E, Liedke MO, Fassbender J, et al. Direct magnetic patterning due to the generation of ferromagnetism by selective ion irradiation of paramagnetic FeAl alloys. Small. 2008;5:229–234. doi: 10.1002/smll.200800783
  • Ohtani Y, Hatakeyama I. Antiferro-ferromagnetic transition and microstructural properties in a sputter deposited FeRh thin film system. J Appl Phys. 1993;74:3328–3332. doi: 10.1063/1.354557
  • Fan R, Kinane CJ, Charlton TR, et al. Ferromagnetism at the interfaces of antiferromagnetic FeRh epilayers. Phys Rev B – Condens Matter Mater Phys. 2010;82:1–6. doi: 10.1103/PhysRevB.82.184418
  • Bali R, Wintz S, Meutzner F, et al. Printing nearly-discrete magnetic patterns using chemical disorder induced ferromagnetism. Nano Lett. 2014;14:435–441. doi: 10.1021/nl404521c
  • Vinokurova LI, Vlasov AV, Pardavi-Horváth M. Pressure effects on magnetic phase transitions in FeRh and FeRhIr alloys. Physica Status Solidi (b). 1976;78:1–9. doi: 10.1002/pssb.2220780136
  • Baldasseroni C, Pálsson GK, Bordel C, et al. Effect of capping material on interfacial ferromagnetism in FeRh thin films. J Appl Phys. 2014;115:43919. doi: 10.1063/1.4862961
  • Gruner ME, Hoffmann E, Entel P. Instability of the rhodium magnetic moment as the origin of the metamagnetic phase transition in α−FeRh. Phys Rev B. 2003;67:64415. doi: 10.1103/PhysRevB.67.064415
  • Witte R, Kruk R, Gruner ME, et al. Tailoring magnetic frustration in strained epitaxial FeRh films. Phys Rev B – Condens Matter Mater Phys. 2016;93:1–9. doi: 10.1103/PhysRevB.93.104416
  • Sandratskii LM, Mavropoulos P. Magnetic excitations and femtomagnetism of FeRh: A first-principles study. Phys Rev B. 2011;83:174408. doi: 10.1103/PhysRevB.83.174408
  • Gu RY, Antropov VP. Dominance of the spin-wave contribution to the magnetic phase transition in FeRh. Phys Rev B – Condens Matter Mater Phys. 2005;72:1–4.
  • Andersen OK, Madsen J, Poulsen UK, et al. Magnetic ground state properties of transition metals. Phys B+C. 1977;86–88:249. doi: 10.1016/0378-4363(77)90303-5
  • Hernando A, Navarro E, Multigner M, et al. Boundary spin disorder in nanocrystalline FeRh alloys. Phys Rev B. 1998;58:5181–5184. doi: 10.1103/PhysRevB.58.5181
  • Navarro E, Multigner M, Yavari AR, et al. The spin glass state of metastable fcc FeRh. Europhys Lett. 1996;35:307–312. doi: 10.1209/epl/i1996-00571-0
  • Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169
  • Mydosh JA. Spin glasses: an experimental introduction. Chicago: Taylor & Francis. 1993; 256 p.
  • Motohashi T, Caignaert V, Pralong V, et al. Competition between ferromagnetism and spin glass: the key for large magnetoresistance in oxygen-deficient perovskites SrCo1-xMxO3-δ (M = Nb,Ru). Phys Rev B – Condens Matter Mater Phys. 2005;71:1–8. doi: 10.1103/PhysRevB.71.214424
  • Fina I, Quintana A, Padilla-Pantoja J, et al. Electric-Field-Adjustable time-dependent magnetoelectric response in martensitic FeRh alloy. ACS Appl Mater Interfaces. 2017;9:15577–15582. doi: 10.1021/acsami.7b00476
  • Lauter V, Ambaye H, Goyette R, et al. Highlights from the magnetism reflectometer at the SNS. Phys B Condens Matter. 2009;404:2543–2546. doi: 10.1016/j.physb.2009.06.021
  • Felcher GP, Hilleke RO, Crawford RK, et al. Polarized neutron reflectometer: a new instrument to measure magnetic depth profiles. Rev Sci Instrum. 1987;58:609–619. doi: 10.1063/1.1139225
  • Felcher GP. Polarized neutron reflectometry – a historical perspective. Physica B 1999;268:154–161. doi: 10.1016/S0921-4526(99)00053-8
  • Björck M, Andersson G. Genx: An extensible X-ray reflectivity refinement program utilizing differential evolution. J Appl Crystallogr. 2007;40:1174–1178. doi: 10.1107/S0021889807045086
  • Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50:17953–17979. doi: 10.1103/PhysRevB.50.17953
  • Blaha P, Schwarz K, Madsen GKH. WIEN2K, an augmented plane wave+ local orbitals program for calculating crystal properties. Vienna: TU Wien; 2001. ISBN 3-9501031-1-2. 2001;2:254.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865