4,667
Views
71
CrossRef citations to date
0
Altmetric
Original Report

Back stress in strain hardening of carbon nanotube/aluminum composites

, , , , , , , , , & show all
Pages 113-120 | Received 08 Sep 2017, Published online: 27 Nov 2017

References

  • Tjong SC. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater Sci Eng R Rep. 2013;74(10):281–350. doi: 10.1016/j.mser.2013.08.001
  • George R, Kashyap KT, Rahul R, et al. Strengthening in carbon nanotube/aluminium (CNT/Al) composites. Scr Mater. 2005;53(10):1159–1163. doi: 10.1016/j.scriptamat.2005.07.022
  • Nam DH, Cha SI, Lim BK, et al. Synergistic strengthening by load transfer mechanism and grain refinement of CNT/Al–Cu composites. Carbon N Y. 2012;50(7):2417–2423. doi: 10.1016/j.carbon.2012.01.058
  • Mokdad F, Chen D, Liu Z, et al. Deformation and strengthening mechanisms of a carbon nanotube reinforced aluminum composite. Carbon N Y. 2016;104:64–77. doi: 10.1016/j.carbon.2016.03.038
  • Wang Y, Chen M, Zhou F, et al. High tensile ductility in a nanostructured metal. Nature. 2002;419(6910):912–915. doi: 10.1038/nature01133
  • Zhu YT, Liao X. Nanostructured metals: retaining ductility. Nat Mater. 2004;3(6):351–352. doi: 10.1038/nmat1141
  • Dieter GE. Mechanical metallurgy, SI metric edition. London: McGraw-Hill; 1988.
  • Yoo S, Han S, Kim W. Strength and strain hardening of aluminum matrix composites with randomly dispersed nanometer-length fragmented carbon nanotubes. Scr Mater. 2013;68(9):711–714. doi: 10.1016/j.scriptamat.2013.01.013
  • Dong S, Zhou J, Hui D. A quantitative understanding on the mechanical behaviors of carbon nanotube reinforced nano/ultrafine-grained composites. Int J Mech Sci. 2015;101–102:29–37. doi: 10.1016/j.ijmecsci.2015.07.019
  • Dong S, Zhou J, Hui D, et al. Size dependent strengthening mechanisms in carbon nanotube reinforced metal matrix composites. Compos A: Appl Sci Manuf. 2015;68:356–364. doi: 10.1016/j.compositesa.2014.10.018
  • Fribourg G, Bréchet Y, Deschamps A, et al. Microstructure-based modelling of isotropic and kinematic strain hardening in a precipitation-hardened aluminium alloy. Acta Mater. 2011;59(9):3621–3635. doi: 10.1016/j.actamat.2011.02.035
  • Feaugas X. On the origin of the tensile flow stress in the stainless steel AISI 316L at 300 K: back stress and effective stress. Acta Mater. 1999;47(13):3617–3632. doi: 10.1016/S1359-6454(99)00222-0
  • Yang M, Pan Y, Yuan F, et al. Back stress strengthening and strain hardening in gradient structure. Mater Res Lett. 2016;4(3):145–151. doi: 10.1080/21663831.2016.1153004
  • Delince M, Brechet Y, Embury JD, et al. Structure-property optimization of ultrafine-grained dual-phase steels using a micro structure-based strain hardening model. Acta Mater. 2007;55(7):2337–2350. doi: 10.1016/j.actamat.2006.11.029
  • Xu R, Tan Z, Xiong D, et al. Balanced strength and ductility in CNT/Al composites achieved by flake powder metallurgy via shift-speed ball milling. Compos A: Appl Sci Manuf. 2017;96:57–66. doi: 10.1016/j.compositesa.2017.02.017
  • Wu X, Yang M, Yuan F, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc Natl Acad Sci U S A. 2015;112(47):14501–14505. doi: 10.1073/pnas.1517193112
  • Withers P, Stobbs W, Pedersen O. The application of the Eshelby method of internal stress determination to short fibre metal matrix composites. Acta Metall. 1989;37(11):3061–3084. doi: 10.1016/0001-6160(89)90341-6
  • Feaugas X, Haddou H. Effects of grain size on dislocation organization and internal stresses developed under tensile loading in FCC metals. Philos Mag. 2007;87(7):989–1018. doi: 10.1080/14786430601019441
  • Sinclair C, Poole W, Bréchet Y. A model for the grain size dependent work hardening of copper. Scr Mater. 2006;55(8):739–742. doi: 10.1016/j.scriptamat.2006.05.018
  • Brown LM, Clarke DR. Work hardening due to internal stresses in composite materials. Acta Metall. 1975;23(7):821–830. doi: 10.1016/0001-6160(75)90198-4
  • da Costa Teixeira J, Bourgeois L, Sinclair C, et al. The effect of shear-resistant, plate-shaped precipitates on the work hardening of Al alloys: towards a prediction of the strength–elongation correlation. Acta Mater. 2009;57(20):6075–6089. doi: 10.1016/j.actamat.2009.08.034
  • Proudhon H, Poole WJ, Wang X, et al. The role of internal stresses on the plastic deformation of the Al–Mg–Si–Cu alloy AA6111. Philos Mag. 2008;88(5):621–640. doi: 10.1080/14786430801894569
  • Beauchamp P, Lepinoux J. Image force on a dislocation in a bcc bicrystal: computer investigation of core effects. Philos Mag A: Phys Condens Matter Struct Defects Mech Prop. 2001;81(5):1187–1205. doi: 10.1080/01418610108214436
  • Nan C-W, Clarke D. The influence of particle size and particle fracture on the elastic/plastic deformation of metal matrix composites. Acta Mater. 1996;44(9):3801–3811. doi: 10.1016/1359-6454(96)00008-0
  • Kuhlmann-Wilsdorf D, Hansen N. Geometrically necessary, incidental and subgrain boundaries. Scr Metall Mater. 1991;25(7):1557–1562. doi: 10.1016/0956-716X(91)90451-6
  • Rezvanian O, Zikry M, Rajendran A. Statistically stored, geometrically necessary and grain boundary dislocation densities: microstructural representation and modelling. Proc R Soc A. 2007;463(2087):2833–2853.
  • Ashby M. The deformation of plastically non-homogeneous materials. Philos Mag. 1970;21(170):399–424. doi: 10.1080/14786437008238426
  • Jiang L, Li Z, Fan G, et al. Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-dimensional alignment of carbon nanotubes. Scr Mater. 2012;66(6):331–334. doi: 10.1016/j.scriptamat.2011.11.023
  • Salama EI, Abbas A, Esawi AM. Preparation and properties of dual-matrix carbon nanotube-reinforced aluminum composites. Compos A: Appl Sci Manuf. 2017;99:84–93. doi: 10.1016/j.compositesa.2017.04.002