2,301
Views
41
CrossRef citations to date
0
Altmetric
Original Report

X-ray refraction distinguishes unprocessed powder from empty pores in selective laser melting Ti-6Al-4V

, ORCID Icon, , , & ORCID Icon
Pages 130-135 | Received 11 Aug 2017, Published online: 11 Dec 2017

References

  • Yap CY, Chua CK, Dong ZL, et al. Review of selective laser melting: materials and applications. Appl Phys Rev. 2015;2(4):041101-1–041101-21. doi: 10.1063/1.4935926
  • Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti–6Al–4 V. Acta Mater. 2010;58(9):3303–3312. doi: 10.1016/j.actamat.2010.02.004
  • Vrancken B, Thijs L, Kruth J-P, et al. Heat treatment of Ti6Al4 V produced by selective laser melting: microstructure and mechanical properties. J Alloys Compd. 2012;541:177–185. doi: 10.1016/j.jallcom.2012.07.022
  • Peters M, Kumpfert J, Ward CH, et al. Titanium alloys for aerospace applications. Adv Eng Mater. 2003;5(6):419–427. doi: 10.1002/adem.200310095
  • Vilaro T, Colin C, Bartout JD. As-Fabricated and heat-treated microstructures of the Ti-6Al-4 V alloy processed by selective Laser melting. Metall Mater Trans A. 2011;42(10):3190–3199. doi: 10.1007/s11661-011-0731-y
  • Kasperovich G, Hausmann J. Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting. J Mater Process Tech. 2015;220:202–214. doi: 10.1016/j.jmatprotec.2015.01.025
  • Gong H, Rafi K, Gu H, et al. Influence of defects on mechanical properties of Ti–6Al–4 V components produced by selective laser melting and electron beam melting. Mater Des. 2015;86:545–554. doi: 10.1016/j.matdes.2015.07.147
  • Leuders S, Thöne M, Riemer A, et al. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance. Int J Fatigue. 2013;48:300–307. doi: 10.1016/j.ijfatigue.2012.11.011
  • Günther J, Krewerth D, Lippmann T, et al. Fatigue life of additively manufactured Ti–6Al–4 V in the very high cycle fatigue regime. Int J Fatigue. 2017;94:236–245. doi: 10.1016/j.ijfatigue.2016.05.018
  • Kasperovich G, Haubrich J, Gussone J, et al. Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting. Mater Des. 2016;105:160–170. doi: 10.1016/j.matdes.2016.05.070
  • Hentschel MP, Hosemann R, Lange A, et al. Small-angle x-ray refraction in metal wires, glass-fibers and hard elastic propylenes. Acta Crystallogr A. 1987;43:506–513. German. doi: 10.1107/S0108767387099100
  • Müller BR, Hentschel MP. Micro-diagnostics: X-ray and synchrotron techniques. In: C H, editor. Handbook of technical diagnostics - fundamentals and application to structures and systems. Berlin (Germany): Springer; 2013. p. 287–300.
  • Müller BR, Lange A, Harwardt M, et al. Synchrotron-based micro-CT and refraction-enhanced micro-CT for non-destructive materials characterisation. Adv Eng Mater. 2009;11(6):435–440. doi: 10.1002/adem.200800346
  • Görner W, Hentschel MP, Müller BR, et al. BAMline: the first hard x-ray beamline at BESSY II. Nuc Instrum Methods Phys Res Sect A. 2001;467-468:703–706. doi: 10.1016/S0168-9002(01)00466-1
  • Rack A, Zabler S, Mueller BR, et al. High resolution synchrotron-based radiography and tomography using hard x-rays at the BAMline (BESSY II). Nucl Instrum Methods Phys Res Sect A. 2008;586(2):327–344. doi: 10.1016/j.nima.2007.11.020
  • Lange A, Hentschel MP, Kupsch A, et al. Numerical correction of x-ray detector backlighting. Int J Mat Res. 2012;103:174–178. doi: 10.3139/146.110659
  • Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. Nat Meth. 2012;9(7):676–682. doi: 10.1038/nmeth.2019
  • Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Meth. 2012;9(7):671–675. doi: 10.1038/nmeth.2089
  • Fensch-Kleemann FE, Harbich K-W, Hentschel MP. Microstructural characterisation of porous ceramics by x-ray refraction topography. Ceram Forum Int. 2002;79(11):E35–E38.