1,752
Views
39
CrossRef citations to date
0
Altmetric
Original Report

Delayed damage accumulation by athermal suppression of defect production in concentrated solid solution alloys

ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 136-141 | Received 24 Oct 2017, Published online: 17 Dec 2017

References

  • Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511. doi: 10.1016/j.actamat.2016.08.081
  • Zhang Y, Zhao S, Weber WJ, et al. Atomic-level heterogeneity and defect dynamics in concentrated solid-solution alloys. Curr Opin Solid State Mater Sci. 2017;21:221–237. doi: 10.1016/j.cossms.2017.02.002
  • Li Z, Pradeep KG, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature. 2016;534:227–230. doi: 10.1038/nature18453
  • Gludovatz B, Hohenwarter A, Thurston KVS, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat Commun. 2016;7:10602. doi: 10.1038/ncomms10602
  • Zhang Y, Jin K, Xue H, et al. Influence of chemical disorder on energy dissipation and defect evolution in advanced alloys. J Mater Res. 2016;31:2363–2375. doi: 10.1557/jmr.2016.269
  • Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6:299–303. doi: 10.1002/adem.200300567
  • Tsai MH, Yeh JW. High-entropy alloys: a critical review. Mater Res Lett. 2014;2:107–123. doi: 10.1080/21663831.2014.912690
  • Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1–93. doi: 10.1016/j.pmatsci.2013.10.001
  • Senkov ON, Wilks GB, Miracle DB, et al. Refractory high-entropy alloys. Intermetallics. 2010;18:1758–1765. doi: 10.1016/j.intermet.2010.05.014
  • Senkov ON, Wilks GB, Scott JM, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics. 2011;19:698–706. doi: 10.1016/j.intermet.2011.01.004
  • Wu Z, Bei H, Pharr GM, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 2014;81:428–441. doi: 10.1016/j.actamat.2014.08.026
  • Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014;345:1153–1158. doi: 10.1126/science.1254581
  • Wei Y, Li Y, Zhu L, et al. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins. Nat Commun. 2014;5:3580.
  • Zhang Y, Stocks GM, Jin K, et al. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nat Commun. 2015;6:8736. doi: 10.1038/ncomms9736
  • Granberg F, Nordlund K, Ullah MW, et al. Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys. Phys Rev Lett. 2016;116:135504. doi: 10.1103/PhysRevLett.116.135504
  • Jin K, Guo W, Lu C, et al. Effects of Fe concentration on the ion-irradiation induced defect evolution and hardening in Ni-Fe solid solution alloys, Acta Mater. 2016;121:365–373. doi: 10.1016/j.actamat.2016.09.025
  • Jin K, Bei H, Zhang Y. Ion irradiation induced defect evolution in Ni and Ni-based FCC equiatomic binary alloys. J Nucl Mater. 2016;471:193–199. doi: 10.1016/j.jnucmat.2015.09.009
  • Velişa G, Ullah MW, Xue H, et al. Irradiation-induced damage evolution in concentrated Ni-based alloys. Acta Mater. 2017;135:54–60. doi: 10.1016/j.actamat.2017.06.002
  • Ullah MW, Xue H, Velisa G, et al. Effects of chemical alternation on damage accumulation in concentrated solid-solution alloys. Sci Rep. 2017;7:4147. doi: 10.1038/s41598-017-03736-3
  • Kiran Kumar NAP, Li C, Leonard KJ, et al. Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation. Acta Mater. 2016;113:230–244. doi: 10.1016/j.actamat.2016.05.007
  • Jin K, Lu C, Wang LM, et al. Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys. Scr Mater. 2016;119:65–70. doi: 10.1016/j.scriptamat.2016.03.030
  • Lu C, Jin K, Béland LK, et al. Direct observation of defect range and evolution in ion-irradiated single crystalline Ni and Ni binary alloys. Sci Rep. 2016;6:19994. doi: 10.1038/srep19994
  • Lu C, Niu L, Chen N, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys. Nat Commun. 2016;7:13564. doi: 10.1038/ncomms13564
  • Lu C, Yang T, Jin K, et al. Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys. Acta Mater. 2017;127:98–107. doi: 10.1016/j.actamat.2017.01.019
  • He M-R, Wang S, Shi S, et al. Mechanisms of radiation-induced segregation in CrFeCoNi-based single-phase concentrated solid solution alloys. Acta Mater. 2017;126:182–193. doi: 10.1016/j.actamat.2016.12.046
  • Shi S, Bei H, Robertson IM. Impact of alloy composition on one-dimensional glide of small dislocation loops in concentrated solid solution alloys. Mater Sci Eng A. 2017;700:617–621. doi: 10.1016/j.msea.2017.05.049
  • Tsai K-Y, Tsai M-H, Yeh J-W. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 2013;61:4887–4897. doi: 10.1016/j.actamat.2013.04.058
  • Zhao S, Stocks GM, Zhang Y. Defect energetics of concentrated solid-solution alloys from ab initio calculations: Ni0.5Co0.5, Ni0.5Fe0.5, Ni0.8Fe0.2 and Ni0.8Cr0.2. Phys Chem Chem Phys. 2016;18:24043–24056. doi: 10.1039/C6CP05161H
  • Zhao S, Velisa G, Xue H, et al. Suppression of vacancy cluster growth in concentrated solid solution alloys. Acta Mater. 2017;125:231–237. doi: 10.1016/j.actamat.2016.11.050
  • Bøttiger J, Davies JA, Lori J, et al. A cryogenic system for low-temperature and clean-environment channeling measurements. Nucl Instr Meth 1973;109:579–583. doi: 10.1016/0029-554X(73)90578-8
  • Swanson ML, Howe LM, Jackman TE, et al. Channeling studies of defects. Nucl Instr Meth Phys Res 1982;194:165–174. doi: 10.1016/0029-554X(82)90510-9
  • Thomé L, Pons F, Ligeon E, et al. Amorphous phase formation in Ni3B by low-temperature deuterium implantation. J Appl Phys. 1988;63:722–725. doi: 10.1063/1.340063
  • Breeger B, Wendler E, Trippensee W, et al. Two-beam irradiation chamber for in situ ion-implantation and RBS at temperatures from 15 K to 300 K. Nucl Instrum Methods Phys Res B 2001;174(1–2):199–204. doi: 10.1016/S0168-583X(00)00433-X
  • Ziegler JF, Biersack JP, Littmark U. The stopping and range of ions in solids. New York (NY): Pergamon Press; 1985.
  • Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996;6:15–50. doi: 10.1016/0927-0256(96)00008-0
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50:17953–17979. doi: 10.1103/PhysRevB.50.17953
  • Cowley JM. Short-Range order and long-range order parameters. Phys Rev. 1965;138:A1384–A1389. doi: 10.1103/PhysRev.138.A1384
  • Cowley JM. An approximate theory of order in alloys. Phys Rev. 1950;77:669–675. doi: 10.1103/PhysRev.77.669
  • Henkelman G, Uberuaga BP, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys. 2000;113:9901–9904. doi: 10.1063/1.1329672
  • Zhang Y, Lian J, Zhu Z, et al. Response of strontium titanate to ion and electron irradiation. J Nucl Mater. 2009;389:303–310. doi: 10.1016/j.jnucmat.2009.02.014
  • Zhang S, Nordlund K, Djurabekova F, et al. Simulation of Rutherford backscattering spectrometry from arbitrary atom structures. Phys Rev E. 2016;94:043319. doi: 10.1103/PhysRevE.94.043319
  • Zhang S, Nordlund K, Djurabekova F, et al. Radiation damage buildup by athermal defect reactions in nickel and concentrated nickel alloys. Mater Res Lett. 2017;5:433–439. doi: 10.1080/21663831.2017.1311284
  • Jin K, Sales BC, Stocks GM, et al. Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity. Sci Rep. 2016;6:20159. doi: 10.1038/srep20159
  • Zarkadoula E, Samolyuk GD, Xue H, et al. Effects of two-temperature model on cascade evolution in Ni and NiFe. Scr Mater. 2016;124:6–10. doi: 10.1016/j.scriptamat.2016.06.028
  • Zarkadoula E, Samolyuk GD, Weber WJ. Two-temperature model in molecular dynamics simulations of cascades in Ni-based alloys. J Alloys Compd. 2017;700:106–112. doi: 10.1016/j.jallcom.2016.12.441
  • Zhao S, Osetsky Y, Zhang Y. Preferential diffusion in concentrated solid solution alloys: NiFe, NiCo and NiCoCr. Acta Mater. 2017;128:391–399. doi: 10.1016/j.actamat.2017.01.056
  • Robertson IM, Vetrano JS, Kirk MA, et al. On the formation of vacancy type dislocation loops from displacement cascades in nickel. Phil Mag A. 1991;63:299–318. doi: 10.1080/01418619108204851