2,612
Views
29
CrossRef citations to date
0
Altmetric
Original Report

From quantum to continuum mechanics: studying the fracture toughness of transition metal nitrides and oxynitrides

ORCID Icon, , , , , , , & ORCID Icon show all
Pages 142-151 | Received 14 Sep 2017, Published online: 17 Dec 2017

References

  • Music D, Geyer RW, Schneider JM. Recent progress and new directions in density functional theory based design of hard coatings. Surf Coat Technol. 2016;286:178–190. doi: 10.1016/j.surfcoat.2015.12.021
  • Cunha L, Andritschky M, Pischow K, et al. Performance of chromium nitride based coatings under plastic processing conditions. Surf Coat Technol. 2000;133-134:61–67. doi: 10.1016/S0257-8972(00)00875-6
  • Rotert SJ, Music D, to Baben M, et al. Theoretical study of elastic properties and phase stability of M0.5Al0.5N1xOx (M = Sc, Ti, V, Cr). J Appl Phys. 2013;113(8): 083512.
  • Shaha KP, Rueß H, Rotert S, et al. Nonmetal sublattice population induced defect structure in transition metal aluminum oxynitrides. Appl Phys Lett. 2013;103(22): 221905. doi: 10.1063/1.4833835
  • Hans M, to Baben M, Music D, et al. Effect of oxygen incorporation on the structure and elasticity of Ti–Al–O–N coatings synthesized by cathodic arc and high power pulsed magnetron sputtering. J Appl Phys. 2014;116(9): 093515. doi: 10.1063/1.4894776
  • Liu S, Wheeler JM, Davis CE, et al. The effect of Si content on the fracture toughness of CrAlN/Si3N4 coatings. J Appl Phys. 2016;119(2): 025305. doi: 10.1063/1.4939758
  • Wang Q, Zhou F, Yan J. Evaluating mechanical properties and crack resistance of CrN, CrTiN, CrAlN and CrTiAlN coatings by nanoindentation and scratch tests. Surf Coat Technol. 2016;285:203–213. doi: 10.1016/j.surfcoat.2015.11.040
  • Rovere F, Music D, Ershov S, et al. Experimental and computational study on the phase stability of Al-containing cubic transition metal nitrides. J Phys D – Appl Phys. 2010;43(3): 035302. doi: 10.1088/0022-3727/43/3/035302
  • Music D, Sun Z, Ahuja R, et al. Electronic structure of M2AlC (0001) surfaces (M = Ti,V,Cr). J Phys: Condens Mat. 2006;18(39):8877–8881.
  • to Baben M, Raumann L., Schneider JM. Phase stability and elastic properties of titanium aluminum oxynitride studied by ab initio calculations. J Phys D: Appl Phys. 2013;46(8): 084002. doi: 10.1088/0022-3727/46/8/084002
  • Ortiz M, Pandolfi A. Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Methods Eng. 1999;44(9):1267–1282. doi: 10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
  • Abdul-Baqi A, Van der Giessen E. Numerical analysis of indentation-induced cracking of brittle coatings on ductile substrates. Int J Solids Struct. 2002;39(6):1427–1442. doi: 10.1016/S0020-7683(01)00280-3
  • Yan Y, Sumigawa T, Shang F, et al. Cohesive zone criterion for cracking along the Cu/Si interface in nanoscale components. Eng Fract Mech. 2011;78(17):2935–2946. doi: 10.1016/j.engfracmech.2011.08.010
  • Yan Y, Shang F. Cohesive zone modeling of interfacial delamination in PZT thin films. Int J Solids Struct. 2009;46(13):2739–2749. doi: 10.1016/j.ijsolstr.2009.03.002
  • Hahn R, Bartosik M, Soler R, et al. Superlattice effect for enhanced fracture toughness of hard coatings. Scripta Mater. 2016;124:67–70. doi: 10.1016/j.scriptamat.2016.06.030
  • Rezaei S, Wulfinghoff S, Reese S. Prediction of fracture and damage in micro/nano coating systems using cohesive zone elements. Int J Solids Struct. 2017;121:62–74. doi: 10.1016/j.ijsolstr.2017.05.016
  • Gnoth C, Kunze C, Hans M, et al. Surface chemistry of TiAlN and TiAlNO coatings deposited by means of high power pulsed magnetron sputtering. J Phys D: Appl Phys. 2013;46(8): 084003. doi: 10.1088/0022-3727/46/8/084003
  • Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev B. 1964;136(3B):B864. doi: 10.1103/PhysRev.136.B864
  • Kresse G, Hafner J. Ab initio molecular-dynamics for liquid-metals. Phys Rev B. 1993;47(1):558–561. doi: 10.1103/PhysRevB.47.558
  • Kresse G, Hafner J. Ab-initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium. Phys Rev B. 1994;49(20):14251–14269. doi: 10.1103/PhysRevB.49.14251
  • Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59(3):1758–1775. doi: 10.1103/PhysRevB.59.1758
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • Blöchl PE, Jepsen O, Andersen OK. Improved tetrahedron method for brillouin-zone integrations. Phys Rev B. 1994;49(23):16223–16233. doi: 10.1103/PhysRevB.49.16223
  • Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B. 1976;13(12):5188–5192. doi: 10.1103/PhysRevB.13.5188
  • Birch F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high-pressures and 300∘K. J Geophys Res. 1978;83(B3):1257–1268. doi: 10.1029/JB083iB03p01257
  • Music D, Takahashi T, Vitos L, et al. Elastic properties of Fe–Mn random alloys studied by ab initio calculations. Appl Phys Lett. 2007;91(19): 191904. doi: 10.1063/1.2807677
  • Hill R. The elastic behaviour of a crystalline aggregate. Proc Phys Soc Sec A. 1952;65(5):349.354 doi: 10.1088/0370-1298/65/5/307
  • Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7(6):1564–1583. doi: 10.1557/JMR.1992.1564
  • Di Maio D, Roberts SG. Measuring fracture toughness of coatings using focused-ion-beam-machined microbeams. J Mater Res. 2005;20(2):299–302. doi: 10.1557/JMR.2005.0048
  • Bohnert C, Schmitt NJ, Weygand SM, et al. Fracture toughness characterization of single-crystalline tungsten using notched micro-cantilever specimens. Int J Plast. 2016;81:1–17. doi: 10.1016/j.ijplas.2016.01.014
  • Brepols T, Wulfinghoff S, Reese S. Gradient-extended two-surface damage-plasticity: micromorphic formulation and numerical aspects. Int J Plast. 2017;97:64–106. doi: 10.1016/j.ijplas.2017.05.010
  • Moes N, Belytschko T. Extended finite element method for cohesive crack growth. Eng Fract Mech. 2002;69(7):813–833. doi: 10.1016/S0013-7944(01)00128-X
  • Harper PW, Hallett SR. Cohesive zone length in numerical simulations of composite delamination. Eng Fract Mech. 2008;75(16):4774–4792. doi: 10.1016/j.engfracmech.2008.06.004
  • Blal N, Daridon L, Monerie Y, et al. Artificial compliance inherent to the intrinsic cohesive zone models: criteria and application to planar meshes. Int J Fracture. 2012 Nov;178(1):71–83. doi: 10.1007/s10704-012-9734-y
  • Zhou L, Holec D, Mayrhofer PH. First-principles study of elastic properties of cubic Cr1−xAlxN alloys. J Appl Phys. 2013;113(4): 043511.
  • Tasnádi F, Abrikosov I, Rogström L, et al. Significant elastic anisotropy in Ti1−xAlxN alloys. Appl Phys Lett. 2010;97(23): 231902. doi: 10.1063/1.3524502
  • Paier J, Marsman M, Hummer K, et al. Screened hybrid density functionals applied to solids. J Chem Phys. 2006;124(15): 154709. doi: 10.1063/1.2187006
  • Bull SJ. Nanoindentation of coatings. J Phys D: Appl Phys. 2005;38(24):R393–R413. doi: 10.1088/0022-3727/38/24/R01
  • Music D, Banko L, Rueß H, et al. Correlative plasma-surface model for metastable Cr–Al–N: Frenkel pair formation and influence of the stress state on the elastic properties. J Appl Phys. 2017;121(21): 215108. doi: 10.1063/1.4985172
  • Guo JG, Zhou LJ, Zhao YP. Size-dependent elastic modulus and fracture toughness of the nanofilm with surface effects. Surf Rev Lett. 2008;15(5):599–603. doi: 10.1142/S0218625X08011901
  • Janssen M, Zuidema J, Wanhill R. Fracture mechanics. 2nd ed. Oxford, UK: CRC Press; 2004.
  • Schnabel V, Köhler M, Music D, et al. Ultra-stiff metallic glasses through bond energy density design. J Phys: Condens Mat. 2017;29(26): 265502.
  • Methfessel M, Hennig D, Scheffler M. Trends of the surface relaxations, surface energies, and work functions of the 4d transition metals. Phys Rev B. 1992;46(8):4816–4829. doi: 10.1103/PhysRevB.46.4816
  • Ou P, Wang J, Shang S, et al. A first-principles study of structure, elasticity and thermal decomposition of Ti1−xTMxN alloys (TM = Y, Zr, Nb, Hf, and Ta). Surf Coat Technol. 2015;264:41–48. doi: 10.1016/j.surfcoat.2015.01.024
  • Sebastiani M, Johanns KE, Herbert EG, et al. Measurement of fracture toughness by nanoindentation methods: recent advances and future challenges. Curr Opin Solid State Mater Sci. 2015;19(6):324–333. doi: 10.1016/j.cossms.2015.04.003