2,540
Views
22
CrossRef citations to date
0
Altmetric
Original Report

On the roles of stress-triaxiality and strain-rate on the deformation behavior of AZ31 magnesium alloys

, , , , , & ORCID Icon show all
Pages 152-158 | Received 05 Nov 2017, Published online: 27 Dec 2017

References

  • Friedrich H, Schumann S. Research for a “new age of magnesium” in the automotive industry. J Mater Process Technol. 2001;117:276–281. doi: 10.1016/S0924-0136(01)00780-4
  • Christian JW, Mahajan S. Deformation twinning. Prog Mater Sci. 1995;39:1–157. doi: 10.1016/0079-6425(94)00007-7
  • Mahajan S, Williams DF. Deformation twinning in metals and alloys. Int Metall Rev. 1973;18:43–61.
  • Roberts CS. Magnesium and its alloys. New York: Wiley; 1960.
  • Keshavarz Z, Barnett MR. EBSD analysis of deformation modes in Mg–3Al–1Zn. Scr Mater. 2006;55:915–918. doi: 10.1016/j.scriptamat.2006.07.036
  • Cizek P, Barnett MR. Characteristics of the contraction twins formed close to the fracture surface in Mg–3Al–1Zn alloy deformed in tension. Scr Mater. 2008;59:959–962. doi: 10.1016/j.scriptamat.2008.06.041
  • Kondori B, Benzerga AA. Effect of stress triaxiality on the flow and fracture of Mg alloy AZ31. Metall Mater Trans A. 2014;45:3292–3307. doi: 10.1007/s11661-014-2211-7
  • Tucker MT, Horstemeyer MF, Gullett PM, et al. Anisotropic effects on the strain rate dependence of a wrought magnesium alloy. Scr Mater. 2009;60:182–185. doi: 10.1016/j.scriptamat.2008.10.011
  • Selvarajou B, Joshi SP, Benzerga AA. Three dimensional simulations of texture and triaxiality effects on the plasticity of magnesium alloys. Acta Mater. 2017;127:54–72. doi: 10.1016/j.actamat.2017.01.015
  • Tucker MT, Horstemeyer MF, Whittington WR, et al. The effect of varying strain rates and stress states on the plasticity, damage, and fracture of aluminum alloys. Mech Mater. 2010;42:895–907. doi: 10.1016/j.mechmat.2010.07.003
  • Bridgman PW. Physics of high pressure. New York: Macmillan; 1931.
  • Solanki K, Horstemeyer M, Steele W, et al. Calibration, validation, and verification including uncertainty of a physically motivated internal state variable plasticity and damage model. Int J Solids Struct. 2010;47:186–203. doi: 10.1016/j.ijsolstr.2009.09.025
  • Chun YB, Davies CHJ. Twinning-induced negative strain rate sensitivity in wrought Mg alloy AZ31. Mater Sci Eng A. 2011;528:5713–5722. doi: 10.1016/j.msea.2011.04.059
  • Hantzsche K, Bohlen J, Wendt J, et al. Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets. Scr Mater. 2010;63:725–730. doi: 10.1016/j.scriptamat.2009.12.033
  • Yu Q, Wang J, Jiang Y, et al. Twin–twin interactions in magnesium. Acta Mater. 2014;77:28–42. doi: 10.1016/j.actamat.2014.05.030
  • Dudamell NV, Ulacia I, Gálvez F, et al. Twinning and grain subdivision during dynamic deformation of a Mg AZ31 sheet alloy at room temperature. Acta Mater. 2011;59:6949–6962. doi: 10.1016/j.actamat.2011.07.047
  • Proust G, Tomé CN, Jain A, et al. Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31. Int J Plast. 2009;25:861–880. doi: 10.1016/j.ijplas.2008.05.005
  • Drozdenko D, Bohlen J, Yi S, et al. Investigating a twinning–detwinning process in wrought Mg alloys by the acoustic emission technique. Acta Mater. 2016;110:103–113. doi: 10.1016/j.actamat.2016.03.013
  • Cui Y, Li Y, Wang Z, et al. Impact of solute elements on detwinning in magnesium and its alloys. Int J Plast. 2017;91:134–159. doi: 10.1016/j.ijplas.2016.09.014