3,476
Views
29
CrossRef citations to date
0
Altmetric
Original Report

Strong and ductile medium Mn steel without transformation-induced plasticity effect

&
Pages 365-371 | Received 01 Feb 2018, Published online: 11 Apr 2018

References

  • He BB, Hu B, Yen HW, et al. High dislocation density-induced large ductility in deformed and partitioned steels. Science. 2017;357:1029–1032. doi: 10.1126/science.aan0177
  • Suh DW, Kim SJ. Medium Mn transformation-induced plasticity steels: recent progress and challenges. Scripta Mater. 2017;126:63–67. doi: 10.1016/j.scriptamat.2016.07.013
  • He BB, Luo HW, Huang MX. Experimental investigation on a novel medium Mn steel combining transformation-induced plasticity and twinning-induced plasticity effects. Int J Plast. 2016;78:173–186. doi: 10.1016/j.ijplas.2015.11.004
  • Shi J, Sun XJ, Wang MQ, et al. Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite. Scripta Mater. 2010;63:815–818. doi: 10.1016/j.scriptamat.2010.06.023
  • Cai ZH, Ding H, Misra RDK, et al. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content. Acta Mater. 2015;84:229–236. doi: 10.1016/j.actamat.2014.10.052
  • Gibbs PJ, De Cooman B, Brown DW, et al. Strain partitioning in ultra-fine grained medium-manganese transformation induced plasticity steel. Mater Sci Eng A. 2014;609:323–333. doi: 10.1016/j.msea.2014.03.120
  • Moor E D, Matlock DK, Speer JG, et al. Austenite stabilization through manganese enrichment. Scripta Mater. 2011;64:185–188. doi: 10.1016/j.scriptamat.2010.09.040
  • Ryu JH, Kim DI, Kim HS, et al. Strain partitioning and mechanical stability of retained austenite. Scripta Mater. 2010;63:297–299. doi: 10.1016/j.scriptamat.2010.04.020
  • McCoy R, Gerberich W. Hydrogen embrittlement studies of a TRIP steel. Metall Trans. 1973;4:539–547. doi: 10.1007/BF02648707
  • Zhu X, Li W, Zhao H, et al. Hydrogen trapping sites and hydrogen-induced cracking in high strength quenching & partitioning (Q&P) treated steel. Int J Hydrogen Energy. 2014;39:13031–13040. doi: 10.1016/j.ijhydene.2014.06.079
  • Wang Y, Chen M, Zhou F, et al. High tensile ductility in a nanostructured metal. Nature. 2002;419:912–915. doi: 10.1038/nature01133
  • Ma E, Zhu T. Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals. Mater Today. 2017;20:323–331. doi: 10.1016/j.mattod.2017.02.003
  • Wu XL, Yang MX, Yuan FP, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc Nat Acad Sci USA. 2015;112:14501–14505. doi: 10.1073/pnas.1517193112
  • Wu XL, Zhu YT. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Lett. 2017;5:527–532. doi: 10.1080/21663831.2017.1343208
  • Hu B, Luo H, Yang F, et al. Recent progress in medium-Mn steels made with new designing strategies, a review. J Mech Sci Technol. 2017;33:1457–1464.
  • Nakada N, Mizutani K, Tsuchiyama T, et al. Difference in transformation behavior between ferrite and austenite formations in medium manganese steel. Acta Mater. 2014;65:251–258. doi: 10.1016/j.actamat.2013.10.067
  • Sato H, Zaefferer S. A study on the formation mechanisms of butterfly-type martensite in Fe–30% Ni alloy using EBSD-based orientation microscopy. Acta Mater. 2009;57:1931–1937. doi: 10.1016/j.actamat.2008.12.035
  • Scott C, Remy B, Collet J-L, et al. Precipitation strengthening in high manganese austenitic TWIP steels. Int J Mater Res. 2011;102:538–549. doi: 10.3139/146.110508
  • Dong H, Sun X. Deformation induced ferrite transformation in low carbon steels. Curr Opin Solid State Mater Sci. 2005;9:269–276. doi: 10.1016/j.cossms.2006.02.014
  • Olson G, Cohen M. Kinetics of strain-induced martensitic nucleation. Metall Trans A. 1975;6:791–795. doi: 10.1007/BF02672301
  • Steineder K, Krizan D, Schneider R, et al. On the microstructural characteristics influencing the yielding behavior of ultra-fine grained medium-Mn steels. Acta Mater. 2017;139:39–50. doi: 10.1016/j.actamat.2017.07.056
  • Jimenez-Melero E, van Dijk NH, Zhao L, et al. Characterization of individual retained austenite grains and their stability in low-alloyed TRIP steels. Acta Mater. 2007;55:6713–6723. doi: 10.1016/j.actamat.2007.08.040
  • Yang HS, Bhadeshia HKDH. Austenite grain size and the martensite-start temperature. Scripta Mater. 2009;60:493–495. doi: 10.1016/j.scriptamat.2008.11.043
  • Zhang S, Findley K. Quantitative assessment of the effects of microstructure on the stability of retained austenite in TRIP steels. Acta Mater. 2013;61:1895–1903. doi: 10.1016/j.actamat.2012.12.010
  • Lee S, Lee SJ, De Cooman BC. Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning. Scripta Mater. 2011;65:225–228. doi: 10.1016/j.scriptamat.2011.04.010
  • Chatterjee S, Wang HS, Yang JR, et al. Mechanical stabilisation of austenite. Mater Sci Technol. 2006;22:641–644. doi: 10.1179/174328406X86128
  • Lee S, De Cooman BC. Influence of carbide precipitation and dissolution on the microstructure of ultra-fine-grained intercritically annealed medium manganese steel. Metall Mater Trans A. 2016;47:3263–3270. doi: 10.1007/s11661-016-3507-6
  • Ashby MF. The deformation of plastically non-homogeneous materials. Philos Mag. 1970;21:399–424. doi: 10.1080/14786437008238426
  • Gao HJ, Huang YG, Nix WD, et al. Mechanism-based strain gradient plasticity? I. Theory. J Mech Phys Solids. 1999;47:1239–1263. doi: 10.1016/S0022-5096(98)00103-3