5,412
Views
29
CrossRef citations to date
0
Altmetric
Miscellany

Highlights on advances in SnO2 quantum dots: insights into synthesis strategies, modifications and applications

, , , , , , & show all
Pages 462-488 | Received 30 Jan 2018, Published online: 25 Jun 2018

References

  • Liu X, Chen N, Han B, et al. Nanoparticle cluster gas sensor: Pt activated SnO2 nanoparticles for NH3 detection with ultrahigh sensitivity. Nanoscale. 2015;7(36):14872–14880. doi: 10.1039/C5NR03585F
  • Suematsu K, Ma N, Yuasa M, et al. Antimony-doped tin dioxide gas sensors exhibiting high stability in the sensitivity to humidity changes. ACS Sens. 2016;1:913–920. doi: 10.1021/acssensors.6b00323
  • Singh K, Malakar R, Narzary R, et al. Hydrogen sensing properties of pure and composites of ZnO and SnO2 particles: understanding sensing mechanism. Sens Lett. 2017;15(9):771–778. doi: 10.1166/sl.2017.3870
  • Chen WG, Peng SY, Tang SR, et al. Palladium doped SnO2 nanocrystals for enhanced methane gas sensing application. Sci Adv Mater. 2017;9:1735–1741.
  • Yin X, Tao L, Wang G, et al. Effects of oxygen and carbon monoxide species on the gas sensing properties of SnO2 nanoparticles. J Nanoelectron Optoelectron. 2017;12(8):748–751. doi: 10.1166/jno.2017.2183
  • Hwang BW, Lee SC, Ahn JH, et al. High sensitivity and recoverable SnO2-based sensor promoted with Fe2O3 and ZnO for Sub-ppm H2S detection. J Nanoelectron Optoelectron. 2017;12(6):617–621. doi: 10.1166/jno.2017.2062
  • Li ZG, Jin L, Liu B, et al. Experiment and simulation study of nano-SnO2 for dissolved fault gases analysis of power transformer. Sci Adv Mater. 2017;9:1888–1894.
  • Velumani M, Meher SR, Balakrishnan L, et al. Zn alloyed SnO2 anomaterials based humidity sensors. Sens Lett. 2017;15(5):424–431. doi: 10.1166/sl.2017.3820
  • Narasimman S, Dinesh U, Balakrishnan L, et al. A comparative study on structural, optical and humidity sensing characteristics of ZnO, SnO2 and ZnO:SnO2 nanocomposite. Sens Lett. 2017;15(5):440–447. doi: 10.1166/sl.2017.3828
  • Kaur S, Kumar A, Rajput JK, et al. SnO2—glycine functionalized carbon nanotubes based electronic nose for detection of explosive materials. Sens Lett. 2016;14(7):733–739. doi: 10.1166/sl.2016.3643
  • Chen Y, Lu J, Wen S, et al. Synthesis of SnO2/MoS2 composites with different component ratios and their applications as lithium ion battery anodes. J Mater Chem A. 2014;2(42):17857–17866. doi: 10.1039/C4TA03770G
  • Sun J, Wang Q, Wang Q, et al. High capacity and cyclability of SnO2–In2O3/graphene nanocomposites as the anode of lithium-ion battery. Sci Adv Mater. 2016;8:1280–1285. doi: 10.1166/sam.2016.2713
  • Fu X, Wang J, Huang D, et al. Trace amount of SnO2-decorated ZnSn(OH)6 as highly efficient photocatalyst for decomposition of gaseous benzene: synthesis, photocatalytic activity, and the unrevealed synergistic effect between ZnSn(OH)6 and SnO2. ACS Catal. 2016;6(2):957–968. doi: 10.1021/acscatal.5b02593
  • Ran L, Zhao D, Gao X, et al. Highly crystalline Ti-doped SnO2 hollow structured photocatalyst with enhanced photocatalytic activity for degradation of organic dyes. CrystEngComm. 2015;17(22):4225–4237. doi: 10.1039/C5CE00184F
  • Ramasamy E, Lee J. Ordered mesoporous Zn-doped SnO2 synthesized by exotemplating for efficient dye-sensitized solar cells. Energy Environ Sci. 2011;4(7):2529–2536. doi: 10.1039/c1ee01123e
  • Tiwana P, Docampo P, Johnston MB, et al. The origin of an efficiency improving ‘light soaking’ effect in SnO2 based solid-state dye-sensitized solar cells. Energy Environ Sci. 2012;5(11):9566–9573. doi: 10.1039/c2ee22320a
  • Asdim, Manseki K, Sugiura T, et al. Microwave synthesis of size-controllable SnO2 nanocrystals for dye-sensitized solar cells. New J Chem. 2014;38(2):598–603. doi: 10.1039/c3nj01278f
  • Li X, Yu Q, Yu C, et al. Zinc-doped SnO2 nanocrystals as photoanode materials for highly efficient dye-sensitized solar cells. J Mater Chem A. 2015;3(15):8076–8082. doi: 10.1039/C5TA01176K
  • Park H, Alhammadi S, Bouras K, et al. Nd-doped SnO2 and ZnO for application in Cu(InGa)Se2 solar cells. Sci Adv Mater. 2017;9:2114–2120.
  • Ate A, Tang Z. High photosensitivity and fast response ultraviolet PD based on large-scale individual tin oxide (SnO2) nanowire. Sens Lett. 2016;14(6):606–610. doi: 10.1166/sl.2016.3660
  • Aksoy S, Caglar Y, Caglar M, et al. Influence of annealing temperature on the structural and optical characteristics of nanostructure SnO2 films and their applications in heterojunction diode. J Nanoelectron Optoelectron. 2016;11(1):115–121. doi: 10.1166/jno.2016.1885
  • Li Z, Zhao Q, Fan W, et al. Porous SnO2 nanospheres as sensitive gas sensors for volatile organic compounds detection. Nanoscale. 2011;3(4):1646–1652. doi: 10.1039/c0nr00728e
  • Sun X, Qiao L, Qiao L, et al. Synthesis of nanosheet-constructed SnO2 spheres with efficient photocatalytic activity and high lithium storage capacity. Ionics. 2017;23(11):3177–3185. doi: 10.1007/s11581-017-2115-9
  • Zhou Q, Liu H, Hong C, et al. Fabrication and enhanced acetylene sensing properties of PdO-decorated SnO2 composites chemical sensor. Sens Lett. 2016;14(11):1144–1149. doi: 10.1166/sl.2016.3734
  • Zhang Q, Zhou Q, Yin X, et al. The effect of PMMA pore-forming on hydrogen sensing properties of porous SnO2 thick film sensor. Sci Adv Mater. 2017;9(8):1350–1355. doi: 10.1166/sam.2017.3111
  • Kim T-K, Jang G-E. Optical and electrical properties of flexible SnO2/Ag/SnO2 multilayer thin films on polyethylene terephthalate substrate. J Nanoelectron Optoelectron. 2017;12(9):881–885. doi: 10.1166/jno.2017.2153
  • Lee J-A, Heo Y-W, Lee J-H, et al. Structural and optical characteristics of Zn-rich In2O3–SnO2–ZnO (ITZO) thin films prepared by radio frequency magnetron sputtering. J Nanoelectron Optoelectron. 2017;12(6):598–601. doi: 10.1166/jno.2017.2054
  • Luo Q, Cai QZ, He J, et al. Characterisation and photocatalytic activity of SnO2 films via plasma electrolytic oxidation. Adv Appl Ceram. 2014;113(4):228–233. doi: 10.1179/1743676114Y.0000000143
  • Zhang L, Wu HB, Wen Lou X. Growth of SnO2 nanosheet arrays on various conductive substrates as integrated electrodes for lithium-ion batteries. Mater Horiz. 2014;1(1):133–138. doi: 10.1039/C3MH00077J
  • Liu H, Huang J, Xiang C, et al. In situ synthesis of SnO2 nanosheet/graphene composite as anode materials for lithium-ion batteries. J Mater Sci: Mater Electron. 2013;24(10):3640–3645.
  • Sathishkumar S, Parthibavarman M, Sharmila V, et al. A facile and one step synthesis of large surface area SnO2 nanorods and its photocatalytic activity. J Mater Sci. 2017;28(11):8192–8196.
  • Hu D, Han B, Deng S, et al. Novel mixed phase SnO2 nanorods assembled with SnO2 nanocrystals for enhancing gas-sensing performance toward isopropanol gas. J Phys Chem C. 2014;118(18):9832–9840. doi: 10.1021/jp501550w
  • Burda C, Chen XB, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes. Chem Rev. 2005;105:1025–1102. doi: 10.1021/cr030063a
  • Liu LZ, Wu XL, Gao F, et al. Determination of surface oxygen vacancy position in SnO2 nanocrystals by Raman spectroscopy. Solid State Commun. 2011;151(11):811–814. doi: 10.1016/j.ssc.2011.03.029
  • Liu LZ, Wu XL, Xu JQ, et al. Oxygen-vacancy and depth-dependent violet double-peak photoluminescence from ultrathin cuboid SnO2 nanocrystals. Appl Phys Lett. 2012;100(12):121903. doi: 10.1063/1.3696044
  • Zhang Y, Li L, Zheng J, et al. Two-step grain-growth kinetics of sub-7 nm SnO2 nanocrystal under hydrothermal condition. J Phys Chem C. 2015;119(33):19505–19512. doi: 10.1021/acs.jpcc.5b05282
  • Sato K, Yokoyama Y, Valmalette J-C, et al. Hydrothermal growth of tailored SnO2 nanocrystals. Cryst Growth Des. 2013;13(4):1685–1693. doi: 10.1021/cg400013q
  • Wu S, Cao H, Yin S, et al. Amino acid-assisted hydrothermal synthesis and photocatalysis of SnO2 nanocrystals. J Phys Chem C. 2009;113:17893–17898. doi: 10.1021/jp9068762
  • Lv T, Chen Y, Ma J, et al. Hydrothermally processed SnO2 nanocrystals for ultrasensitive NO sensors. RSC Adv. 2014;4(43):22487–22490. doi: 10.1039/c4ra03121k
  • Liu LZ, Xu JQ, Wu XL, et al. Optical identification of oxygen vacancy types in SnO2 nanocrystals. Appl Phys Lett. 2013;102(3):031916. doi: 10.1063/1.4789538
  • Liu LZ, Wu XL, Li TH, et al. Morphology-dependent low-frequency Raman scattering in ultrathin spherical, cubic, and cuboid SnO2 nanocrystals. Appl Phys Lett. 2011;99(25):251902. doi: 10.1063/1.3670337
  • Yuasa M, Kida T, Shimanoe K. Preparation of a stable sol suspension of Pd-loaded SnO2 nanocrystals by a photochemical deposition method for highly sensitive semiconductor gas sensors. ACS Appl Mater Interfaces. 2012;4(8):4231–4236. doi: 10.1021/am300941a
  • Bhanjana G, Dilbaghi N, Kumar R, et al. SnO2 quantum dots as novel platform for electrochemical sensing of cadmium. Electrochim Acta. 2015;169:97–102. doi: 10.1016/j.electacta.2015.04.045
  • Ma J, Zhang J, Wang S, et al. Superior gas-sensing and lithium-storage performance SnO2 nanocrystals synthesized by hydrothermal method. CrystEngComm. 2011;13(20):6077–6081. doi: 10.1039/c1ce05320e
  • Ghosh S, Das K, Chakrabarti K, et al. Effect of oleic acid ligand on photophysical, photoconductive and magnetic properties of monodisperse SnO2 quantum dots. Dalton Trans. 2013 Mar 14;42(10):3434–3446. doi: 10.1039/C2DT31764H
  • Pradhan K, Paul S, Das AR. Synthesis of indeno and acenaphtho cores containing dihydroxy indolone, pyrrole, coumarin and uracil fused heterocyclic motifs under sustainable conditions exploring the catalytic role of the SnO2 quantum dot. RSC Adv. 2015;5(16):12062–12070. doi: 10.1039/C4RA12618A
  • Xu X, Z J, Wang X. SnO2 quantum dots and quantum wires: controllable synthesis, self-assembled 2D architectures, and gas-sensing properties. J Am Chem Soc. 2008;130:12527–12535. doi: 10.1021/ja8040527
  • Paul S, Pradhan K, Ghosh S, et al. Uncapped SnO2 quantum dot catalyzed cascade assembling of four components: a rapid and green approach to the pyrano[2,3-c]pyrazole and spiro-2-oxindole derivatives. Tetrahedron. 2014;70(36):6088–6099. doi: 10.1016/j.tet.2014.02.077
  • Chen Y, Ma J, Li Q, et al. Gram-scale synthesis of ultrasmall SnO2 nanocrystals with an excellent electrochemical performance. Nanoscale. 2013;5(8):3262–3265. doi: 10.1039/c3nr00356f
  • Bhattacharjee A, Ahmaruzzaman M. Facile synthesis of SnO2 quantum dots and its photocatalytic activity in the degradation of eosin Y dye: A green approach. Mater Lett. 2015;139:418–421. doi: 10.1016/j.matlet.2014.10.121
  • Birkel A, Lee YG, Koll D, et al. Highly efficient and stable dye-sensitized solar cells based on SnO2 nanocrystals prepared by microwave-assisted synthesis. Energy Environ Sci. 2012;5(1):5392–5400. doi: 10.1039/C1EE02115J
  • Xiao L, Shen H, von Hagen R, et al. Microwave assisted fast and facile synthesis of SnO2 quantum dots and their printing applications. Chem Commun. 2010;46(35):6509–6511. doi: 10.1039/c0cc01156h
  • Bhattacharjee A, Ahmaruzzaman M. A novel and green process for the production of tin oxide quantum dots and its application as a photocatalyst for the degradation of dyes from aqueous phase. J Colloid Interface Sci. 2015;448:130–139. doi: 10.1016/j.jcis.2015.01.083
  • Bhattacharjee A, Ahmaruzzaman M. Photocatalytic-degradation and reduction of organic compounds using SnO2 quantum dots (via a green route) under direct sunlight. RSC Adv. 2015;5(81):66122–66133. doi: 10.1039/C5RA07578E
  • Sain S, Kar A, Patra A, et al. Structural interpretation of SnO2 nanocrystals of different morphologies synthesized by microwave irradiation and hydrothermal methods. CrystEngComm. 2014;16(6):1079–1090. doi: 10.1039/C3CE42281J
  • Majles Ara MH, Boroojerdian P, Javadi Z, et al. Synthesis and nonlinear optical characterization of SnO2 quantum dots. Optik. 2012;123(22):2090–2094. doi: 10.1016/j.ijleo.2011.11.005
  • Liu X, Pan L, Chen T, et al. Visible light photocatalytic degradation of methylene blue by SnO2 quantum dots prepared via microwave-assisted method. Catal Sci Technol. 2013;3(7):1805–1809. doi: 10.1039/c3cy00013c
  • Singh MK, Mathpal MC, Agarwal A. Optical properties of SnO2 quantum dots synthesized by laser ablation in liquid. Chem Phys Lett. 2012;536:87–91. doi: 10.1016/j.cplett.2012.03.084
  • Pan SS, Yu SF, Zhang WF, et al. Low threshold amplified spontaneous emission from tin oxide quantum dots: a instantiation of dipole transition silence semiconductors. Nanoscale. 2013;5(23):11561–11567. doi: 10.1039/c3nr03523a
  • Pan S, Lu W, Chu Z, et al. Deep ultraviolet emission from water-soluble SnO2 quantum dots grown via a facile ‘top-down’ strategy. J Mater Sci Technol. 2015;31(6):670–673. doi: 10.1016/j.jmst.2014.09.017
  • Santos NF, Rodrigues J, Holz T, et al. Luminescence studies on SnO2 and SnO2:Eu nanocrystals grown by laser assisted flow deposition. Phys Chem Chem Phys. 2015 May 28;17(20):13512–13519. doi: 10.1039/C4CP06114D
  • Pan SS, Li FD, Liu QW, et al. Strong localization induced anomalous temperature dependence exciton emission above 300 K from SnO2 quantum dots. J Appl Phys. 2015;117(17):173101. doi: 10.1063/1.4919595
  • Wang J, Du J, Chen C, et al. Electron-beam irradiation strategies for growth behavior of tin dioxide nanocrystals. J Phys Chem C. 2011;115(42):20523–20528. doi: 10.1021/jp207673r
  • Huang RT, Zhang Q, Chen ZW, et al. Irradiated graphene loaded with SnO2 quantum dots for energy storage. ACS Nano. 2015;9:11351–11361. doi: 10.1021/acsnano.5b05146
  • Mosadegh Sedghi S, Mortazavi Y, Khodadadi A. Low temperature CO and CH4 dual selective gas sensor using SnO2 quantum dots prepared by sonochemical method. Sens Actuators B Chem. 2010;145(1):7–12. doi: 10.1016/j.snb.2009.11.002
  • Kamble VB, Umarji AM. Defect induced optical bandgap narrowing in undoped SnO2 nanocrystals. AIP Adv. 2013;3(8):082120. doi: 10.1063/1.4819451
  • Lee K-T, Lin C-H, Lu S-Y. SnO2 quantum dots synthesized with a carrier solvent assisted interfacial reaction for band-structure engineering of TiO2 photocatalysts. J Phys Chem C. 2014;118(26):14457–14463. doi: 10.1021/jp5045749
  • Kida T, Doi T, Shimanoe K. Synthesis of monodispersed SnO2 nanocrystals and their remarkably high sensitivity to volatile organic compounds. Chem Mater. 2010;22(8):2662–2667. doi: 10.1021/cm100228d
  • Cui H, Xue J, Ren W, et al. Ultra-large scale synthesis of high electrochemical performance SnO2 quantum dots within 5 min at room temperature following a growth self-termination mechanism. J Alloys Compd. 2015;645:11–16. doi: 10.1016/j.jallcom.2015.05.015
  • Epifani M, Arbio J, Pellicer E, et al. Synthesis and gas-sensing properties of Pd-doped SnO2 nanocrystals. A case study of a general methodology for doping metal oxide nanocrystals. Cryst Growth Des. 2008;8:1774–1778. doi: 10.1021/cg700970d
  • Stroppa DG, Beltra A, Conti TG, et al. Unveiling the chemical and morphological features of Sb-SnO2 nanocrystals by the combined use of high-resolution transmission electron microscopy and ab initio surface energy calculations. J Am Chem Soc. 2009;131:14544–14548. doi: 10.1021/ja905896u
  • Kar A, Patra A. Optical and electrical properties of Eu3+-doped SnO2 nanocrystals. J Phys Chem C. 2009;113:4375–4380. doi: 10.1021/jp810777f
  • Wu S, Yuan S, Shi L, et al. Preparation, characterization and electrical properties of fluorine-doped tin dioxide nanocrystals. J Colloid Interface Sci. 2010;346(1):12–16. doi: 10.1016/j.jcis.2010.02.031
  • Kumar V, Govind A, Nagarajan R. Optical and photocatalytic properties of heavily F(-)-doped SnO2 nanocrystals by a novel single-source precursor approach. Inorg Chem. 2011 Jun 20;50(12):5637–5645. doi: 10.1021/ic2003436
  • Kaviyarasu K, Devarajan PA, Xavier SSJ, et al. One pot synthesis and characterization of cesium doped SnO2 nanocrystals via a hydrothermal process. J Mater Sci Technol. 2012;28(1):15–20. doi: 10.1016/S1005-0302(12)60017-6
  • Kumar V, Nagarajan R. Thermoluminescence in heavily F-doped of SnO2 nanocrystals. Chem Phys Lett. 2012;530:98–101. doi: 10.1016/j.cplett.2012.02.021
  • Sabergharesou T, Wang T, Ju L, et al. Electronic structure and magnetic properties of sub-3 nm diameter Mn-doped SnO2 nanocrystals and nanowires. Appl Phys Lett. 2013;103(1):012401. doi: 10.1063/1.4813011
  • Mazumder N, Sen D, Saha S, et al. Enhanced ultraviolet emission from Mg doped SnO2 nanocrystals at room temperature and its modulation upon H2 annealing. J Phys Chem C. 2013;117(12):6454–6461. doi: 10.1021/jp4000329
  • Zhou GX, Xiong SJ, Wu XL, et al. N-doped SnO2 nanocrystals with green emission dependent upon mutual effects of nitrogen dopant and oxygen vacancy. Acta Mater. 2013;61(19):7342–7347. doi: 10.1016/j.actamat.2013.08.040
  • Yu SX, Yang LW, Li YC, et al. Preferred orientation growth and size tuning of colloidal SnO2 nanocrystals through Gd3+ doping. J Cryst Growth. 2013;367:62–67. doi: 10.1016/j.jcrysgro.2012.11.068
  • Fan CM, Peng Y, Zhu Q, et al. Synproportionation reaction for the fabrication of Sn2+ self-doped SnO2-x nanocrystals with tunable band structure and highly efficient visible light photocatalytic activity. J Phys Chem C. 2013;117(46):24157–24166. doi: 10.1021/jp407296f
  • Nilavazhagan S, Muthukumaran S, Ashokkumar M. Structural, optical and morphological properties of La, Cu co-doped SnO2 nanocrystals by co-precipitation method. Opt Mater. 2014;37:425–432. doi: 10.1016/j.optmat.2014.07.003
  • Sakthiraj K, Balachandrakumar K. Influence of Ti addition on the room temperature ferromagnetism of tin oxide (SnO2) nanocrystal. J Magn Magn Mater. 2015;395:205–212. doi: 10.1016/j.jmmm.2015.07.083
  • Babu B, Kadam AN, Ravikumar R, et al. Enhanced visible light photocatalytic activity of Cu-doped SnO2 quantum dots by solution combustion synthesis. J Alloys Compd. 2017;703:330–336. doi: 10.1016/j.jallcom.2017.01.311
  • Reddy CV, Babu B, Shim J. Synthesis of Cr-doped SnO2 quantum dots and its enhanced photocatalytic activity. Mater Sci Eng, B. 2017;223:131–142. doi: 10.1016/j.mseb.2017.06.007
  • Song H, Li N, Cui H, et al. Enhanced capability and cyclability of SnO2–graphene oxide hybrid anode by firmly anchored SnO2 quantum dots. J Mater Chem A. 2013;1(26):7558–7562. doi: 10.1039/c3ta11442b
  • Chang Y, Yao Y, Wang B, et al. Reduced graphene oxide mediated SnO2 nanocrystals for enhanced gas-sensing properties. J Mater Sci Technol. 2013;29(2):157–160. doi: 10.1016/j.jmst.2012.11.007
  • Cai D, Yang T, Liu B, et al. A nanocomposite of tin dioxide octahedral nanocrystals exposed to high-energy facets anchored onto graphene sheets for high performance lithium-ion batteries. J Mater Chem A. 2014;2(34):13990. doi: 10.1039/C4TA01850H
  • Dutta D, Chandra S, Swain AK, et al. SnO2 quantum dots-reduced graphene oxide composite for enzyme-free ultrasensitive electrochemical detection of urea. Anal Chem. 2014;86(12):5914–5921. doi: 10.1021/ac5007365
  • Zhang Y, Jiang L, Wang C. Facile synthesis of SnO2 nanocrystals anchored onto graphene nanosheets as anode materials for lithium-ion batteries. Phys Chem Chem Phys. 2015;17(31):20061–20065. doi: 10.1039/C5CP03305E
  • Mishra RK, Upadhyay SB, Kushwaha A, et al. SnO2 quantum dots decorated on RGO: a superior sensitive, selective and reproducible performance for a H2 and LPG sensor. Nanoscale. 2015;7(28):11971–11979. doi: 10.1039/C5NR02837J
  • Li L, He S, Liu M, et al. Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperature. Anal Chem. 2015;87(3):1638–1645. doi: 10.1021/ac503234e
  • Zhang J, Chang L, Wang F, et al. Ultrafine SnO2 nanocrystals anchored graphene composites as anode material for lithium-ion batteries. Mater Res Bull. 2015;68:120–125. doi: 10.1016/j.materresbull.2015.03.041
  • Li Z, Wu G, Deng S, et al. Combination of uniform SnO2 nanocrystals with nitrogen doped graphene for high-performance lithium-ion batteries anode. Chem Eng J. 2016;283:1435–1442. doi: 10.1016/j.cej.2015.08.052
  • Wang Y, Jin Y, Zhao C, et al. SnO2 quantum dots/graphene aerogel composite as high-performance anode material for sodium ion batteries. Mater Lett. 2017;191:169–172. doi: 10.1016/j.matlet.2016.12.072
  • Zhang W, Li M, Xiao X, et al. In situ synthesis of ultrasmall SnO2 quantum dots on nitrogen-doped reduced graphene oxide composite as high performance anode material for lithium-ion batteries. J Alloys Compd. 2017;727:1–7. doi: 10.1016/j.jallcom.2017.04.316
  • Luo Y, Fan S, Luo Y, et al. Assembly of SnO2 quantum dots on RGO to form SnO2/N doped RGO as a high-capacity anode material for lithium ion batteries. CrystEngComm. 2015;17(8):1741–1744. doi: 10.1039/C4CE02315C
  • Yang Y, Ji X, Lu F, et al. The mechanistic exploration of porous activated graphene sheets-anchored SnO2 nanocrystals for application in high-performance Li-ion battery anodes. Phys Chem Chem Phys. 2013;15(36):15098–15105. doi: 10.1039/c3cp52808a
  • Zhou W, Wang J, Zhang F, et al. SnO2 nanocrystals anchored on N-doped graphene for high-performance lithium storage. Chem Commun. 2015;51(17):3660–3662. doi: 10.1039/C4CC08650C
  • Chen C, Wang L, Liu Y, et al. Assembling tin dioxide quantum dots to graphene nanosheets by a facile ultrasonic route. Langmuir. 2013;29(12):4111–4118. doi: 10.1021/la304753x
  • Ren J, Yang J, Abouimrane A, et al. SnO2 nanocrystals deposited on multiwalled carbon nanotubes with superior stability as anode material for Li-ion batteries. J Power Sources. 2011;196(20):8701–8705. doi: 10.1016/j.jpowsour.2011.06.036
  • Jin Y-H, Min K-M, Seo S-D, et al. Enhanced Li storage capacity in 3 nm diameter SnO2 nanocrystals firmly anchored on multiwalled carbon nanotubes. J Phys Chem C. 2011;115(44):22062–22067. doi: 10.1021/jp208021w
  • Song H, Li N, Cui H, et al. Monodisperse SnO2 nanocrystals functionalized multiwalled carbon nanotubes for large rate and long lifespan anode materials in lithium ion batteries. Electrochim Acta. 2014;120:46–51. doi: 10.1016/j.electacta.2013.12.052
  • Liu H, Zhang W, Yu H, et al. Solution-processed gas sensors employing SnO2 quantum dot/MWCNT nanocomposites. ACS Appl Mater Interfaces. 2016;8(1):840–846. doi: 10.1021/acsami.5b10188
  • Lu X, Wang H, Wang Z, et al. Room-temperature synthesis of colloidal SnO2 quantum dot solution and ex-situ deposition on carbon nanotubes as anode materials for lithium ion batteries. J Alloys Compd. 2016;680:109–115. doi: 10.1016/j.jallcom.2016.04.128
  • Jin R, Meng Y, Li G. Multiwalled carbon nanotubes@C@SnO2 quantum dots and SnO2 quantum dots@C as high rate anode materials for lithium-ion batteries. Appl Surf Sci. 2017;423:476–483. doi: 10.1016/j.apsusc.2017.06.215
  • Wang L, Wang D, Zhang FX, et al. Protein-inspired synthesis of SnO2nanocrystals with controlled carbon nanocoating as anode materials for lithium-ion battery. RSC Adv. 2013;3(5):1307–1310. doi: 10.1039/C2RA22375A
  • Hu R, Sun W, Zeng M, et al. Dispersing SnO2 nanocrystals in amorphous carbon as a cyclic durable anode material for lithium ion batteries. J Energy Chem. 2014;23(3):338–345. doi: 10.1016/S2095-4956(14)60156-X
  • Song H, Li N, Cui H, et al. Significantly improved high-rate Li-ion batteries anode by encapsulating tin dioxide nanocrystals into mesotunnels. CrystEngComm. 2013;15(42):8537–8543. doi: 10.1039/c3ce41410h
  • Yang J, Xi L, Tang J, et al. There-dimensional porous carbon network encapsulated SnO2 quantum dots as anode materials for high-rate lithium ion batteries. Electrochim Acta. 2016;217:274–282. doi: 10.1016/j.electacta.2016.09.086
  • Yu Z, Zhu S, Li Y, et al. Synthesis of SnO2 nanoparticles inside mesoporous carbon via a sonochemical method for highly reversible lithium batteries. Mater Lett. 2011;65:3072–3075. doi: 10.1016/j.matlet.2011.06.053
  • Wang X, Li Z, Yin L. Nanocomposites of SnO2@ordered mesoporous carbon (OMC) as anode materials for lithium-ion batteries with improved electrochemical performance. CrystEngComm. 2013;15(37):7589–7597. doi: 10.1039/c3ce41256c
  • Fan X, Shao J, Xiao X, et al. In situ synthesis of SnO2 nanoparticles encapsulated in micro/mesoporous carbon foam as a high-performance anode material for lithium ion batteries. J Mater Chem A. 2014;2(43):18367–18374. doi: 10.1039/C4TA04278F
  • Yang ZX, Du GD, Meng Q, et al. Dispersion of SnO2 nanocrystals on TiO2(B) nanowires as anode material for lithium ion battery applications. RSC Adv. 2011;1:1834–1840. doi: 10.1039/c1ra00500f
  • Du G, Guo Z, Zhang P, et al. SnO2 nanocrystals on self-organized TiO2 nanotube array as three-dimensional electrode for lithium ion microbatteries. J Mater Chem. 2010;20(27):5689–5694. doi: 10.1039/c0jm00330a
  • Wang J, Chen Z, Liu Y, et al. Heterojunctions and optical properties of ZnO/SnO2 nanocomposites adorned with quantum dots. Sol Energy Mater Sol Cells. 2014;128:254–259. doi: 10.1016/j.solmat.2014.05.038
  • Sahana MB, Sudakar C, Dixit A, et al. Quantum confinement effects and band gap engineering of SnO2 nanocrystals in a MgO matrix. Acta Mater. 2012;60(3):1072–1078. doi: 10.1016/j.actamat.2011.11.012
  • Han SY, Kim IY, Lee SH, et al. Electrochemically active nanocomposites of Li4Ti5O12 2D nanosheets and SnO2 0D nanocrystals with improved electrode performance. Electrochim Acta. 2012;74:59–64. doi: 10.1016/j.electacta.2012.03.175
  • Ma L, Xu L, Xu X, et al. Fabrication of SnO2/SnS2 hybrids by anchoring ultrafine SnO2 nanocrystals on SnS2 nanosheets and their photocatalytic properties. Ceram Int. 2016;42(4):5068–5074. doi: 10.1016/j.ceramint.2015.12.020
  • Cai J, Li Z, Yao S, et al. Close-packed SnO2 nanocrystals anchored on amorphous silica as a stable anode material for lithium-ion battery. Electrochim Acta. 2012;74:182–188. doi: 10.1016/j.electacta.2012.04.045
  • Dutta D, Thakur D, Bahadur D. SnO2 quantum dots decorated silica nanoparticles for fast removal of cationic dye (methylene blue) from wastewater. Chem Eng J. 2015;281:482–490. doi: 10.1016/j.cej.2015.06.110
  • Du Z, Zhang S, Jiang T, et al. Facile synthesis of SnO2 nanocrystals coated conducting polymer nanowires for enhanced lithium storage. J Power Sources. 2012;219:199–203. doi: 10.1016/j.jpowsour.2012.07.052
  • Zhuang S, Xu X, Pang Y, et al. PEGME-bonded SnO2 quantum dots for excellent photocatalytic activity. RSC Adv. 2013;3(43):20422–20428. doi: 10.1039/c3ra42774a
  • Babu B, Cho M, Byon C, et al. Sunlight-driven photocatalytic activity of SnO2 QDs-g-C3N4 nanolayers. Mater Lett. 2018;212:327–331. doi: 10.1016/j.matlet.2017.10.110
  • Nath SS, Ganguly A, Gope G, et al. SnO2 quantum dots for nano light emitting devices. Nanosyst: Phys Chem Math. 2017;8:661–664.
  • Chen Z, Pan D, Li Z, et al. Recent advances in tin dioxide materials: some developments in thin films, nanowires, and nanorods. Chem Rev. 2014;114(15):7442–7486. doi: 10.1021/cr4007335
  • Wang H, Rogach AL. Hierarchical SnO2 nanostructures: recent advances in design, synthesis, and applications. Chem Mater. 2014;26(1):123–133. doi: 10.1021/cm4018248
  • Huang M, Feng M, Li H, et al. Rapid microwave-assisted synthesis of SnO2 quantum dots/reduced graphene oxide composite with its application in lithium-ion battery. Mater Lett. 2017;209:260–263. doi: 10.1016/j.matlet.2017.08.006
  • Mi H, Xu Y, Shi W, et al. Polymer-derived carbon nanofiber network supported SnO2 nanocrystals: a superior lithium secondary battery material. J Mater Chem. 2011;21(48):19302–19309. doi: 10.1039/c1jm12262b
  • Ding S, Luan D, Boey FY, et al. SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties. Chem Commun. 2011;47(25):7155–7157. doi: 10.1039/c1cc11968k
  • Jiang S, Zhao B, Ran R, et al. A freestanding composite film electrode stacked from hierarchical electrospun SnO2 nanorods and graphene sheets for reversible lithium storage. RSC Adv. 2014;4(18):9367–9371. doi: 10.1039/C3RA47840H
  • Xu C, Sun J, Gao L. Direct growth of monodisperse SnO2 nanorods on graphene as high capacity anode materials for lithium ion batteries. J Mater Chem. 2012;22(3):975–979. doi: 10.1039/C1JM14099J
  • Zhou X, Yin YX, Wan LJ, et al. A robust composite of SnO2 hollow nanospheres enwrapped by graphene as a high-capacity anode material for lithium-ion batteries. J Mater Chem. 2012;22(34):17456–17459. doi: 10.1039/c2jm32984k
  • Shahid M, Yesibolati N, Reuter MC, et al. Layer-by-layer assembled graphene-coated mesoporous SnO2 spheres as anodes for advanced Li-ion batteries. J Power Sources. 2014;263:239–245. doi: 10.1016/j.jpowsour.2014.03.146
  • Wu P, Xu X, Zhu Q, et al. Self-assembled graphene-wrapped SnO2 nanotubes nanohybrid as a high-performance anode material for lithium-ion batteries. J Alloys Compd. 2015;626:234–238. doi: 10.1016/j.jallcom.2014.12.037
  • Chen XB, Mao SS. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev. 2007;107:2891–2959. doi: 10.1021/cr0500535
  • Wan X, Ma R, Tie S, et al. Effects of calcination temperatures and additives on the photodegradation of methylene blue by tin dioxide nanocrystals. Mater Sci Semicond Process. 2014;27:748–757. doi: 10.1016/j.mssp.2014.07.048
  • Jia ZQ, Sun HJ, Wang Y, et al. Facile synthesis of tin oxide nanocrystals and their photocatalytic activity. Trans Nonferrous Met Soc China. 2014;24(6):1813–1818. doi: 10.1016/S1003-6326(14)63258-1
  • Shajira PS, Prabhu VG, Bushiri MJ. Sunlight assisted photodegradation by tin oxide quantum dots. J Phys Chem Solids. 2015;87:244–252. doi: 10.1016/j.jpcs.2015.09.003
  • Begum S, Devi TB, Ahmaruzzaman M. Surfactant mediated facile fabrication of SnO2 quantum dots and their degradation behavior of humic acid. Mater Lett. 2016;185:123–126. doi: 10.1016/j.matlet.2016.07.028
  • Dai S, Yao Z. Synthesis of flower-like SnO2 single crystals and its enhanced photocatalytic activity. Appl Surf Sci. 2012;258(15):5703–5706. doi: 10.1016/j.apsusc.2012.02.065
  • Wang J, Fan HQ, Yu HW. Synthesis of hierarchical SnO2 microflowers assembled by nanosheets and their enhanced photocatalytic properties. Mater Trans. 2015;56:1911–1914. doi: 10.2320/matertrans.M2015287
  • Du F, Zuo X, Yang Q, et al. Facile assembly of TiO2 nanospheres/SnO2 quantum dots composites with excellent photocatalyst activity for the degradation of methyl orange. Ceram Int. 2016;42(11):12778–12782. doi: 10.1016/j.ceramint.2016.05.036
  • Zhu L, Wang M, Kwan Lam T, et al. Fast microwave-assisted synthesis of gas-sensing SnO2 quantum dots with high sensitivity. Sens Actuators B Chem. 2016;236:646–653. doi: 10.1016/j.snb.2016.04.173
  • He Y, Tang P, Li J, et al. Ultrafast response and recovery ethanol sensor based on SnO2 quantum dots. Mater Lett. 2016;165:50–54. doi: 10.1016/j.matlet.2015.11.092
  • Nemade KR, Waghuley SA. In situ synthesis of graphene/SnO2 quantum dots composites for chemiresistive gas sensing. Mater Sci Semicond Process. 2014;24:126–131. doi: 10.1016/j.mssp.2014.02.047
  • Lin L, Xing H, Shu R, et al. Preparation and microwave absorption properties of multi-walled carbon nanotubes decorated with Ni-doped SnO2 nanocrystals. RSC Adv. 2015;5(115):94539–94550. doi: 10.1039/C5RA17303E
  • Dutta D, Gupta J, Thakur D, et al. Magnetically engineered SnO2 quantum dots as a bimodal agent for optical and magnetic resonance imaging. Mater Res Express. 2017;4(12):125005. doi: 10.1088/2053-1591/aa9ac3