4,549
Views
75
CrossRef citations to date
0
Altmetric
Original report

Dielectric and piezoelectric properties of 0.7 Pb(Mg1/3Nb2/3)O3-0.3 PbTiO3 single crystal poled using alternating current

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & show all
Pages 537-544 | Received 20 Mar 2018, Published online: 24 Jul 2018

References

  • Wang Y, Gray D, Berry D, et al. An extremely low equivalent magnetic noise magnetoelectric sensor. Adv Mater. 2011;23:4111–4114. doi: 10.1002/adma.201100773
  • Zheng M, Zheng R-K. Electric-field-tunable ferroelastic control of nonvolatile resistivity and ferromagnetic switching in multiferroic La0.67Ca0.33MnO3/[PbMg1/3Nb2/3O3]0.7[PbTiO3]0.3 heterostructures. Phys Rev Appl. 2016;5:1–8. 044002. doi: 10.1103/PhysRevApplied.5.044002
  • Zhang S, Li F. High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective. J Appl Phys. 2012;111:1–50. 031301.
  • Zhang S, Li F, Jiang X, et al. Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers – A review. Prog Mater Sci. 2015;68:1–66. doi: 10.1016/j.pmatsci.2014.10.002
  • Setter N. Piezoelectric materials in devices: extended reviews on current and emerging piezoelectric materials, technology, and applications. Lausanne: EPFL Swiss Federal Institute of Technology; 2002.
  • Ma J, Martin KH, Li Y, et al. Design factors of intravascular dual frequency transducers for super-harmonic contrast imaging and acoustic angiography. Phys Med Biol. 2015;60:3441. doi: 10.1088/0031-9155/60/9/3441
  • Zhang S, Shrout TR. Relaxor-PT single crystals: observations and developments. IEEE Trans Ultrason Ferroelectr Freq Control. 2010;57:2138–2146. doi: 10.1109/TUFFC.2010.1670
  • Li D, Bonnell DA. Ferroelectric lithography. Ceram Int. 2008;34:157–164. doi: 10.1016/j.ceramint.2006.09.021
  • Chang W-Y, Huang W, Bagal A, et al. Study on dielectric and piezoelectric properties of 0.7 Pb(Mg1/3Nb2/3)O3-0.3 PbTiO3 single crystal with nano-patterned composite electrode. J Appl Phys. 2013;114:1–6. 114103.
  • Yamamoto N, Yamashita Y, Hosono Y, et al. Ultrasonic probe, piezoelectric transducer, method of manufacturing ultrasonic probe, and method of manufacturing piezoelectric transducer [Internet]. 2014 [cited 2017 Jul 26]. Available from: http://www.google.com/patents/US20140062261.
  • Ye Z-G. Handbook of advanced dielectric, piezoelectric and ferroelectric materials: synthesis, properties and applications. Cambridge: Woodhead Publishing; 2008.
  • Wada S, Tsurumi T. Enhanced piezoelectricity of barium titanate single crystals with engineered domain configuration. Br Ceram Trans. 2004;103:93–96. doi: 10.1179/096797804225012747
  • Ahluwalia R, Lookman T, Saxena A, et al. Piezoelectric response of engineered domains in ferroelectrics. Appl Phys Lett. 2004;84:3450–3452. doi: 10.1063/1.1737059
  • Yamashita Y, Yamamoto N, Hosono Y, et al. Piezoelectric transducer, ultrasonic probe, and piezoelectric transducer manufacturing method [Internet]. 2015 [cited 2017 Jul 21]. Available from: http://www.google.com/patents/US20150372219.
  • Plessner KW. Ageing of the dielectric properties of barium titanate ceramics. Proc Phys Soc Sect B. 1956;69:1261. doi: 10.1088/0370-1301/69/12/309
  • Bradt RC, Ansell GS. Aging in tetragonal ferroelectric barium titanate. J Am Ceram Soc. 1969;52:192–198. doi: 10.1111/j.1151-2916.1969.tb13364.x
  • Zhang L, Ren X. Aging behavior in single-domain Mn-doped BaTiO3 crystals: implication for a unified microscopic explanation of ferroelectric aging. Phys Rev B. 2006;73: 094121.
  • Shepard JF, Chu F, Kanno I, et al. Characterization and aging response of the d31 piezoelectric coefficient of lead zirconate titanate thin films. J Appl Phys. 1999;85:6711–6716. doi: 10.1063/1.370183
  • Kholkin AL, Tagantsev AK, Colla EL, et al. Piezoelectric and dielectric aging in pb(zr,ti)o3 thin films and bulk ceramics. Integr Ferroelectr. 1997;15:317–324. doi: 10.1080/10584589708015722
  • DeLaunay J, Smith PL. Aging of Barium Titanate and Lead Zirconate-Titanate Ferroelectric Ceramics [Internet]. NAVAL RESEARCH LAB WASHINGTON DC, NAVAL RESEARCH LAB WASHINGTON DC; 1970 [cited 2017 Jul 30]. Report No.: NRL-7172. Available from: http://www.dtic.mil/docs/citations/AD0715624.
  • Devonshire AF. Theory of ferroelectrics. Adv Phys. 1954;3:85–130. doi: 10.1080/00018735400101173
  • Zhang QM, Zhao J, Cross LE. Aging of the dielectric and piezoelectric properties of relaxor ferroelectric lead magnesium niobate–lead titanate in the electric field biased state. J Appl Phys. 1996;79:3181–3187. doi: 10.1063/1.361261
  • Shrout TR, Huebner W, Randall CA, et al. Aging mechanisms in Pb(Mg1/3Nb2/3)O3-based relaxor ferroelectrics. Ferroelectrics. 1989;93:361–372. doi: 10.1080/00150198908017368
  • Wang P-C, Luo H-S, Pan X-M, et al. Dielectric and piezoelectric properties of PMN-PT single crystals grown by Bridgman method. In: Applications of Ferroelectrics, 2000. ISAF 2000 proc. 2000 12th IEEE Int. symp. vol. 2. p. 537–540, Honolulu, HI, USA: IEEE.
  • Zhang S, Lee S-M, Kim D-H, et al. Characterization of Mn-modified Pb(Mg1/3Nb2/3)O3–PbZrO3–PbTiO3 single crystals for high power broad bandwidth transducers. Appl Phys Lett. 2008;93:1–3. 122908.
  • IEEE Standard on Piezoelectricity. IEEE standard on piezoelectricity. New York: ANSIIEEE Std; 1988. p. 176–1987 doi: 10.1109/IEEESTD.1988.79638
  • Cao H, Li J, Viehland D, et al. Fragile phase stability in (1- x) Pb(Mg1/3Nb2/3O3)-xPbTiO3 crystals: A comparison of [001] and [110] field-cooled phase diagrams. Phys Rev B. 2006;73:1–9. 184110.
  • Bai F, Wang N, Li J, et al. X-ray and neutron diffraction investigations of the structural phase transformation sequence under electric field in 0.7Pb(Mg1/3Nb2/3)-0.3PbTiO3 crystal. J Appl Phys. 2004;96:1620–1627. doi: 10.1063/1.1766087
  • Vanderbilt D, Cohen MH. Monoclinic and triclinic phases in higher-order devonshire theory. Phys Rev B. 2001;63:1–9. 094108. doi: 10.1103/PhysRevB.63.094108
  • Dkhil B, Kiat JM, Calvarin G, et al. Local and long range polar order in the relaxor-ferroelectric compounds PbMg1/3Nb2/3O3 and PbMg0.3Nb0.6Ti0.1O3. Phys Rev B. 2001;65:1–8. 024104. doi: 10.1103/PhysRevB.65.024104
  • Phelan D, Rodriguez EE, Gao J, et al. Phase diagram of the relaxor ferroelectric (1 - x)Pb(Mg1/3Nb2/3)O3 + xPbTiO3 revisited: a neutron powder diffraction study of the relaxor skin effect. Phase Transit. 2015;88:283–305. doi: 10.1080/01411594.2014.989226
  • Wong KS, Zhao X, Dai JY, et al. Study of domain boundary polarization in (111)-cut [Pb(Mg1/3Nb2/3)O3]0.7(PbTiO3)0.3 single crystal by piezoresponse force microscopy. Appl Phys Lett. 2006;89:1–3. 092906.
  • Wada S. Domain wall engineering in piezoelectric crystals with engineered domain configuration. Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials-Synthesis, Characterization and Applications. Cambridge, England: Woodhead (2008): 266–303.
  • Wang YU. Field-induced inter-ferroelectric phase transformations and domain mechanisms in high-strain piezoelectric materials: insights from phase field modeling and simulation. J Mater Sci. 2009;44:5225–5234. doi: 10.1007/s10853-009-3663-9
  • Li F, Zhang S, Xu Z, et al. Composition and phase dependence of the intrinsic and extrinsic piezoelectric activity of domain engineered (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals. J Appl Phys. 2010;108:1–9. 034106.
  • Shabbir G, Kojima S, Feng C. High temperature dc field poling effects on the structural phase transformations of (1-x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 single crystal with morphotropic phase boundary composition. J Appl Phys. 2006;100:1–4. 064107. doi: 10.1063/1.2337103
  • Damjanovic D. Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics. J Am Ceram Soc. 2005;88:2663–2676. doi: 10.1111/j.1551-2916.2005.00671.x
  • Li F, Lin D, Chen Z, et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat Mater. 2018;17:349–354. doi: 10.1038/s41563-018-0034-4
  • Wu K, Schulze WA. Aging of the weak-field dielectric response in fine- and coarse-grain ceramic BaTiO3. J Am Ceram Soc. 1992;75:3390–3395. doi: 10.1111/j.1151-2916.1992.tb04439.x
  • Srilomsak S, Schulze WA, Pilgrim SM, et al. Harmonic analysis of polarization hysteresis of aged PZTs. J Am Ceram Soc. 2005;88:2121–2125. doi: 10.1111/j.1551-2916.2005.00418.x
  • Luo N, Zhang S, Li Q, et al. Crystallographic dependence of internal bias in domain engineered Mn-doped relaxor-PbTiO 3 single crystals. J Mater Chem C. 2016;4:4568–4576. doi: 10.1039/C6TC00875E