1,236
Views
6
CrossRef citations to date
0
Altmetric
Original Report

Multifunctional porous catalyst produced by mechanical alloying

ORCID Icon, &
Pages 131-136 | Received 19 Sep 2018, Published online: 14 Jan 2019

References

  • Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001;46:1–184. doi: 10.1016/S0079-6425(99)00010-9
  • Ma E, Zhu T. Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals. Mater Today. 2017;20:323–331. doi: 10.1016/j.mattod.2017.02.003
  • Wu X, Zhu Y. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Lett. 2017;5:527–532. doi: 10.1080/21663831.2017.1343208
  • Koch CC. Structural nanocrystalline materials: an overview. J Mater Sci. 2007;42:1403–1414. doi: 10.1007/s10853-006-0609-3
  • Humphry-Baker SA, Schuh CA. Spontaneous solid-state foaming of nanocrystalline thermoelectric compounds at elevated temperatures. Nano Energy. 2017;36:223–232. doi: 10.1016/j.nanoen.2017.04.018
  • Cook B, Chan T, Dezsi G, et al. High-performance three-stage cascade thermoelectric devices with 20% efficiency. J Electron Mater. 2015;44:1936–1942. doi: 10.1007/s11664-014-3600-9
  • Wang H, Li J-F, Nan C-W, et al. High-performance ag 0.8 pb 18+ x sbte 20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering. Appl Phys Lett. 2006;88:092104. doi: 10.1063/1.2181197
  • Dai W, Pan Y, Wang N, et al. Nanocrystalline nis particles synthesized by mechanical alloying as a promising oxygen evolution electrocatalyst. Mater Lett. 2018;218:115–118. doi: 10.1016/j.matlet.2018.01.141
  • Zaluski L, Zaluska A, Ström-Olsen J. Hydrogen absorption in nanocrystalline mg2ni formed by mechanical alloying. J Alloys Compd. 1995;217:245–249. doi: 10.1016/0925-8388(94)01348-9
  • Webb C. A review of catalyst-enhanced magnesium hydride as a hydrogen storage material. J Phys Chem Solids. 2015;84:96–106. doi: 10.1016/j.jpcs.2014.06.014
  • Liang G, Huot J, Boily S, et al. Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2–tm (tm = Ti, V, Mn, Fe and Ni) systems. J Alloys Compd. 1999;292:247–252. doi: 10.1016/S0925-8388(99)00442-9
  • Schoenitz M, Ward T, Dreizin E. Preparation of energetic metastable nano-composite materials by arrested reactive milling. MRS Online Proceedings Library Archive 2003, 800.
  • Ward TS, Chen W, Schoenitz M, et al. A study of mechanical alloying processes using reactive milling and discrete element modeling. Acta Mater. 2005;53:2909–2918. doi: 10.1016/j.actamat.2005.03.006
  • Manotas-Albor M, Vargas-Uscategui A, Palma R, et al. In situ production of tantalum carbide nanodispersoids in a copper matrix by reactive milling and hot extrusion. J Alloys Compd. 2014;598:126–132. doi: 10.1016/j.jallcom.2014.01.191
  • Orthner H, Tomasi R. Reaction sintering of titanium carbide and titanium silicide prepared by high-energy milling. Mater Sci Eng A. 2002;336:202–208. doi: 10.1016/S0921-5093(01)01963-3
  • Guevara L, Wanner C, Welsh R, et al. Using mechanical alloying to create bimetallic catalysts for vapor-phase carbon nanofiber synthesis. Fibers. 2015;3:394–410. doi: 10.3390/fib3040394
  • Feng L, Xie N, Zhong J. Carbon nanofibers and their composites: a review of synthesizing, properties and applications. Materials. 2014;7:3919–3945. doi: 10.3390/ma7053919
  • Lu W, He T, Xu B, et al. Progress in catalytic synthesis of advanced carbon nanofibers. J Mater Chem A. 2017;5:13863–13881. doi: 10.1039/C7TA02007D
  • Rodriguez NM. A review of catlytically grown carbon nanofibers. J Mater Res. 1993;8:3233–3250. doi: 10.1557/JMR.1993.3233
  • Kim MS, Rodriguez NM, Baker RTK. The interaction of hydrocarbons with copper-nickel and nickel in the formation of carbon filaments. J Catal. 1991;131:60–73. doi: 10.1016/0021-9517(91)90323-V
  • Klein KL, Melechko AV, Rack PD, et al. Cu–Ni composition gradient for the catalytic synthesis of vertically aligned carbon nanofibers. Carbon. 2005;43:1857–1863. doi: 10.1016/j.carbon.2005.02.027
  • Wang H, Baker RTK. Decomposition of methane over a Ni−Cu−MgO catalyst to produce hydrogen and carbon nanofibers. J Phys Chem B. 2004;108:20273–20277. doi: 10.1021/jp040496x
  • Izadi N, Rashidi A, Borghei M, et al. Synthesis of carbon nanofibres over nanoporous Ni–MgO catalyst: influence of the bimetallic Ni–(Cu, CO, MO) MgO catalysts. J Exp Nanosci. 2012;7:160–173. doi: 10.1080/17458080.2010.513019
  • Guevara L, Welsh R, Atwater M. Parametric effects of mechanical alloying on carbon nanofiber catalyst production in the Ni-Cu system. Metals. 2018;8:286. doi: 10.3390/met8040286
  • Atwater MA, Luckenbaugh TL, Hornbuckle BC, et al. Solid state foaming of nickel, Monel, and copper by the reduction and expansion of NiO and CuO dispersions. Adv Eng Mater. 2018;20:1800302. doi: 10.1002/adem.201800302
  • Chen D, Christensen KO, Ochoa-Fernández E, et al. Synthesis of carbon nanofibers: effects of Ni crystal size during methane decomposition. J Catal. 2005;229:82–96. doi: 10.1016/j.jcat.2004.10.017
  • Malesevic A, Chen H, Hauffman T, et al. Study of the catalyst evolution during annealing preceding the growth of carbon nanotubes by microwave plasma-enhanced chemical vapour deposition. Nanotechnology. 2007;18:455602. doi: 10.1088/0957-4484/18/45/455602
  • Atwater MA, Phillips J, Leseman ZC. The effect of powder sintering on the palladium-catalyzed formation of carbon nanofibers from ethylene–oxygen mixtures. Carbon. 2010;48:1932–1938. doi: 10.1016/j.carbon.2010.01.060
  • Toebes ML, Bitter JH, Van Dillen AJ, et al. Impact of the structure and reactivity of nickel particles on the catalytic growth of carbon nanofibers. Catal Today. 2002;76:33–42. doi: 10.1016/S0920-5861(02)00209-2
  • Zeng Z, Natesan K. Relationship of carbon crystallization to the metal-dusting mechanism of nickel. Chem Mater. 2003;15:872–878. doi: 10.1021/cm020807l
  • Jarrah NA, Ommen J, Lefferts L. Mechanistic aspects of the formation of carbon-nanofibers on the surface of Ni foam: a new microstructured catalyst support. J Catal. 2006;239:460–469. doi: 10.1016/j.jcat.2006.02.021
  • Jarrah NA, Li F, van Ommen JG, et al. Immobilization of a layer of carbon nanofibres (CNFs) on Ni foam: a new structured catalyst support. J Mat Chem. 2005;15:1946–1953. doi: 10.1039/b416977h
  • Jeong N, Lee J. Growth of filamentous carbon by decomposition of ethanol on nickel foam: influence of synthesis conditions and catalytic nanoparticles on growth yield and mechanism. J Catal. 2008;260:217–226. doi: 10.1016/j.jcat.2008.10.006
  • Nouri A, Wen C. Surfactants in mechanical alloying/milling: a catch-22 situation. Cr Rev Sol State. 2014;39:81–108. doi: 10.1080/10408436.2013.808985
  • Würschum R, Herth S, Brossmann U. Diffusion in nanocrystalline metals and alloys—a status report. Adv Eng Mater. 2003;5:365–372. doi: 10.1002/adem.200310079
  • Atwater MA, Guevara LN, Darling KA, et al. Solid state porous metal production: a review of the capabilities, characteristics, and challenges. Adv Eng Mater. 2018;20:33.
  • Atwater MA, Welsh RJ, Edwards DS, et al. Multiscale design of nanofibrous carbon aerogels: synthesis, properties and comparisons with other low-density carbon materials. Carbon. 2017;124:588–598. doi: 10.1016/j.carbon.2017.09.041
  • Koch CC, Scattergood RO, Darling KA, et al. Stabilization of nanocrystalline grain sizes by solute additions. J Mater Sci. 2008;43:7264–7272. doi: 10.1007/s10853-008-2870-0