2,434
Views
39
CrossRef citations to date
0
Altmetric
Original Report

Ultrahigh cyclability of a large elastocaloric effect in multiferroic phase-transforming materials

ORCID Icon, , , , , ORCID Icon & show all
Pages 137-144 | Received 08 Aug 2018, Published online: 21 Jan 2019

References

  • Mañosa L, Planes A. Materials with giant mechanocaloric effects: cooling by strength. Adv Mater. 2017;29(11):1603607. doi: 10.1002/adma.201603607
  • Lloveras P, Stern-Taulats E, Barrio M, et al. Giant barocaloric effects at low pressure in ferrielectric ammonium sulphate. Nat Commun. 2015;6:8801. doi: 10.1038/ncomms9801
  • Bonnot E, Romero R, Mañosa L, et al. Elastocaloric effect associated with the martensitic transition in shape-memory alloys. Phys Rev Lett. 2008;100(12):3436–3440. doi: 10.1103/PhysRevLett.100.125901
  • Bechtold C, Chluba C, de Miranda RL, et al. High cyclic stability of the elastocaloric effect in sputtered TiNiCu shape memory films. Appl Phys Lett. 2012;101(9):091903. doi: 10.1063/1.4748307
  • Mañosa L, Jarque-Farnos S, Vives E, et al. Large temperature span and giant refrigerant capacity in elastocaloric Cu-Zn-Al shape memory alloys. Appl Phys Lett. 2013;103(21):211904. doi: 10.1063/1.4832339
  • Yang Z, Cong DY, Sun XM, et al. Enhanced cyclability of elastocaloric effect in boron-microalloyed Ni-Mn-In magnetic shape memory alloys. Acta Mater. 2017;127:33–42. doi: 10.1016/j.actamat.2017.01.025
  • Yang Z, Cong DY, Huang L, et al. Large elastocaloric effect in a Ni–Co–Mn–Sn magnetic shape memory alloy. Mater Des. 2016;92:932–936. doi: 10.1016/j.matdes.2015.12.118
  • Tušek J, Engelbrecht K, Eriksen D, et al. A regenerative elastocaloric heat pump. Nat Energy. 2016;1:16134. doi: 10.1038/nenergy.2016.134
  • Vopson MM. The multicaloric effect in multiferroic materials. Solid State Commun. 2012;152(23):2067–2070. doi: 10.1016/j.ssc.2012.08.016
  • Wilkes KE, Liaw PK. The fatigue behavior of shape-memory alloys. JOM. 2000;52(10):45–51. doi: 10.1007/s11837-000-0083-3
  • Liu CT, Stiegler JO. Ductile ordered intermetallic alloys. Science. 1984;226:636–642. doi: 10.1126/science.226.4675.636
  • Liu Y, Liu CT, Heatherly L, et al. Effect of boron on the fracture behavior and grain boundary chemistry of Ni3Fe. Scr Mater. 2011;64(3):303–306. doi: 10.1016/j.scriptamat.2010.08.027
  • Liu CT, George EP. Environmental embrittlement in boron-free and boron-doped FeAl (40 at.% Al) alloys. Scr Mater. 1990;24(7):1285–1290. doi: 10.1016/0956-716X(90)90343-F
  • Larsen DE, Christodoulou L, Kampe SL, et al. Investment-cast processing of XD TM near-γ titanium aluminides. Mater Sci Eng A. 1991;144(1-2):45–49. doi: 10.1016/0921-5093(91)90208-5
  • Moya X, Mañosa L, Planes A, et al. Martensitic transition and magnetic properties in Ni–Mn–X alloys. Mater Sci Eng A. 2006;438-440:911–915. doi: 10.1016/j.msea.2006.02.053
  • Lu B, Liu J. Elastocaloric effect and superelastic stability in Ni–Mn–In–Co polycrystalline Heusler alloys: hysteresis and strain-rate effects. Sci Rep. 2017;7:2084. doi: 10.1038/s41598-017-02300-3
  • Cohron JW, George EP, Heatherly L, et al. Hydrogen-boron interaction and its effect on the ductility and fracture of Ni3Al. Acta Mater. 1997;45(7):2801–2811. doi: 10.1016/S1359-6454(96)00383-7
  • Norfleet DM, Sarosi PM, Manchiraju S, et al. Transformation-induced plasticity during pseudoelastic deformation in Ni–Ti microcrystals. Acta Mater. 2009;57 (12):3549–3561. doi: 10.1016/j.actamat.2009.04.009
  • Lu B, Zhang P, Xu Y, et al. Elastocaloric effect in Ni45Mn36.4In13.6Co5 metamagnetic shape memory alloys under mechanical cycling. Mater Lett. 2015;148:110–113. doi: 10.1016/j.matlet.2015.02.076
  • Hu Y, Li Z, Yang B, et al. Combined caloric effects in a multiferroic Ni–Mn–Ga alloy with broad refrigeration temperature region. APL Mater. 2017;5(4):046103. doi: 10.1063/1.4980161
  • Kim Y, Jo M-G, Park J-W, et al. Elastocaloric effect in polycrystalline Ni50Ti45.3V4.7 shape memory alloy. Scr Mater. 2018;144:48–51. doi: 10.1016/j.scriptamat.2017.09.048
  • Xu Y, Lu B, Sun W, et al. Large and reversible elastocaloric effect in dual-phase Ni54Fe19Ga27 superelastic alloys. Appl Phys Lett. 2015;106(20):201903. doi: 10.1063/1.4921531
  • Engelbrecht K, Tušek J, Sanna S, et al. Effects of surface finish and mechanical training on Ni-Ti sheets for elastocaloric cooling. APL Mater. 2016;4(6):064110. doi: 10.1063/1.4955131