4,640
Views
53
CrossRef citations to date
0
Altmetric
Original Reports

Exceptional nanostructure stability and its origins in the CoCrNi-based precipitation-strengthened medium-entropy alloy

, , , , , , & show all
Pages 152-158 | Received 15 Nov 2018, Published online: 21 Jan 2019

References

  • Liang Y-J, Wang L, Wen Y, et al. High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys. Nat Commun. 2018;9(1):4063. doi: 10.1038/s41467-018-06600-8
  • Ma Y, Wang Q, Jiang B, et al. Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al 2 (Ni, Co, Fe, Cr) 14 compositions. Acta Mater. 2018;147:213–225. doi: 10.1016/j.actamat.2018.01.050
  • Fu Z, Jiang L, Wardini JL, et al. A high-entropy alloy with hierarchical nanoprecipitates and ultrahigh strength. Sci Adv. 2018;4(10):eaat8712. doi: 10.1126/sciadv.aat8712
  • Han B, Wei J, Tong Y, et al. Composition evolution of gamma prime nanoparticles in the Ti-doped CoFeCrNi high entropy alloy. Scr Mater. 2018;148:42–46. doi: 10.1016/j.scriptamat.2018.01.025
  • He JY, Wang H, Huang HL, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 2016;102:187–196. doi: 10.1016/j.actamat.2015.08.076
  • Yang T, Zhao Y, Liu W, et al. L12-strengthened high-entropy alloys for advanced structural applications. J Mater Res. 2018;33(19):2983–2997. doi: 10.1557/jmr.2018.186
  • Zhao Y, Yang T, Zhu J, et al. Development of high-strength Co-free high-entropy alloys hardened by nanosized precipitates. Scr Mater. 2018;148:51–55. doi: 10.1016/j.scriptamat.2018.01.028
  • Zhao Y, Yang T, Tong Y, et al. Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy. Acta Mater. 2017;138:72–82. doi: 10.1016/j.actamat.2017.07.029
  • Tsai M-H, Yeh J-W. High-entropy alloys: a critical review. Mater Res Lett. 2014;2(3):107–123. doi: 10.1080/21663831.2014.912690
  • Zhao YY, Chen HW, Lu ZP, et al. Thermal stability and coarsening of coherent particles in a precipitation-hardened (NiCoFeCr) 94 Ti 2 Al 4 high-entropy alloy. Acta Mater. 2018;147:184–194. doi: 10.1016/j.actamat.2018.01.049
  • Yang T, Zhao Y, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science. 2018;362(6417):933–937. doi: 10.1126/science.aas8815
  • Reed RC. The superalloys: fundamentals and applications. Cambridge university press; 2008.
  • Sequeira A, Calderon H, Kostorz G, et al. Bimodal size distributions of γ′ precipitates in Ni-Al-Mo—I. small-angle neutron scattering. Acta Metall Mater. 1995;43(9):3427–3439. doi: 10.1016/0956-7151(95)00043-U
  • Lifshitz IM, Slyozov VV. The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids. 1961;19(1-2):35–50. doi: 10.1016/0022-3697(61)90054-3
  • Jayanth C, Nash P. Experimental evaluation of particle coarsening theories. Mater Sci Technol. 1990;6(5):405–414. doi: 10.1179/mst.1990.6.5.405
  • Sudbrack CK, Ziebell TD, Noebe RD, et al. Effects of a tungsten addition on the morphological evolution, spatial correlations and temporal evolution of a model Ni–Al–Cr superalloy. Acta Mater. 2008;56(3):448–463. doi: 10.1016/j.actamat.2007.09.042
  • Ardell AJ, Ozolins V. Trans-interface diffusion-controlled coarsening. Nat Mater. 2005;4(4):309–316. doi:10.1038/nmat1340.PubMedPMID:15778716 doi: 10.1038/nmat1340
  • Meher S, Nag S, Tiley J, et al. Coarsening kinetics of γ′ precipitates in cobalt-base alloys. Acta Mater. 2013;61(11):4266–4276. doi: 10.1016/j.actamat.2013.03.052
  • Li X, Saunders N, Miodownik AP. The coarsening kinetics of γ′ particles in Nickel-based alloys. Metall Mater Trans A. 2001;33A:2002–3367.
  • Hou JS, Guo JT, Yang GX, et al. The microstructural instability of a hot corrosion resistant superalloy during long-term exposure. Mater Sci Eng: A. 2008;498(1-2):349–358. doi: 10.1016/j.msea.2008.08.005
  • Davies C, Nash P, Stevens R. Precipitation in Ni-Co-Al alloys. J Mater Sci. 1980;15(6):1521–1532. doi: 10.1007/BF00752134
  • Bian H, Xu X, Li Y, et al. Regulating the coarsening of the γ′ phase in superalloys. NPG Asia Mater. 2015;7(8):e212. doi: 10.1038/am.2015.96
  • Philippe T, Voorhees PW. Ostwald ripening in multicomponent alloys. Acta Mater. 2013;61(11):4237–4244. doi: 10.1016/j.actamat.2013.03.049
  • Campbell CE, Boettinger WJ, Kattner UR. Development of a diffusion mobility database for Ni-base. Acta Mater. 2002;50:775–792. doi: 10.1016/S1359-6454(01)00383-4
  • Lass EA, Sauza DJ, Dunand DC, et al. Multicomponent γ’-strengthened Co-based superalloys with increased solvus temperatures and reduced mass densities. Acta Mater. 2018;147:284–295. doi: 10.1016/j.actamat.2018.01.034
  • Andersson JO, Ågren J. Models for numerical treatment of multicomponent diffusion in simple phases. J Appl Phys. 1992;72(4):1350–1355. doi: 10.1063/1.351745
  • Ardell AJ. Interfacial free energies and solute diffusivities from data on Ostwald ripening. Interface Sci. 1995;3(2):119–125. doi: 10.1007/BF00207013
  • Tiley J, Viswanathan GB, Srinivasan R, et al. Coarsening kinetics of γ′ precipitates in the commercial nickel base superalloy René 88 DT. Acta Mater. 2009;57(8):2538–2549. doi: 10.1016/j.actamat.2009.02.010
  • Tsai KY, Tsai MH, Yeh JW. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 2013;61(13):4887–4897. doi: 10.1016/j.actamat.2013.04.058
  • Paul A. Comments on “sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys” by KY Tsai, MH Tsai and JW Yeh, Acta Materialia 61 (2013) 4887–4897. Scr Mater. 2017;135:153–157. doi: 10.1016/j.scriptamat.2017.03.026
  • Miracle DB. High-entropy alloys: A current evaluation of founding ideas and core effects and exploring “nonlinear alloys”. JOM. 2017;69(11):2130–2136. doi: 10.1007/s11837-017-2527-z
  • Divinski SV, Pokoev A, Esakkiraja N, Paul A. A mystery of” sluggish diffusion” in high-entropy alloys: the truth or a myth? arXiv preprint arXiv:180403465. 2018.
  • Gust W, Hintz M, Loddwg A, et al. Impurity diffusion of Al in Ni single crystals studied by secondary ion mass spectrometry (SIMS). Physica Status Solidi (a). 1981;64(1):187–194. doi: 10.1002/pssa.2210640120
  • Campbell CE, Rukhin AL. Evaluation of self-diffusion data using weighted means statistics. Acta Mater. 2011;59(13):5194–5201. doi: 10.1016/j.actamat.2011.04.055