3,999
Views
20
CrossRef citations to date
0
Altmetric
Original Report

A eutectic high-entropy alloy with good high-temperature strength-plasticity balance

, ORCID Icon, , , &
Pages 460-466 | Received 27 May 2019, Published online: 05 Aug 2019

References

  • Lu YP, Gao XZ, Jiang L, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 2017;124:143–150. doi: 10.1016/j.actamat.2016.11.016
  • Lu YP, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci Rep. 2014;4:6200. doi: 10.1038/srep06200
  • Lu YP, Jiang H, Guo S, et al. A new strategy to design eutectic high-entropy alloys using mixing enthalpy. Intermetallics. 2017;91:124–128. doi: 10.1016/j.intermet.2017.09.001
  • Jin X, Zhou Y, Zhang L, et al. A novel Fe20Co20Ni41Al19 eutectic high entropy alloy with excellent tensile properties. Mater Lett. 2018;216:144–146. doi: 10.1016/j.matlet.2018.01.017
  • He F, Wang ZJ, Cheng P, et al. Designing eutectic high entropy alloys of CoCrFeNiNbx. J Alloy Compds. 2016;656:284–289. doi: 10.1016/j.jallcom.2015.09.153
  • He F, Wang ZJ, Shang XL, et al. Stability of lamellar structures in CoCrFeNiNbx eutectic high entropy alloys at elevated temperatures. Mater Des. 2016;104:259–264. doi: 10.1016/j.matdes.2016.05.044
  • Huo WY, Zhou H, Fang F, et al. Microstructure and mechanical properties of CoCrFeNiZrx eutectic high-entropy alloys. Mater Des. 2017;134:226–233. doi: 10.1016/j.matdes.2017.08.030
  • Zhang YL, Wang X, Li J, et al. Deformation mechanism during high-temperature tensile test in an eutectic high-entropy alloy AlCoCrFeNi2.1. Mater Sci Eng A. 2018;724:148–155. doi: 10.1016/j.msea.2018.03.078
  • Guénolé J, Mouhib FZ, Huber L, et al. Basal slip in Laves phases: the synchroshear dislocation. Scr Mater. 2019;166:134–138. doi: 10.1016/j.scriptamat.2019.03.016
  • Ding ZY, He QF, Wang Q, et al. Superb strength and high plasticity in laves phase rich eutectic medium-entropy-alloy nanocomposites. Int J Plast. 2018;106:57–72. doi: 10.1016/j.ijplas.2018.03.001
  • Jiang H, Qiao DX, Lu YP, et al. Direct solidification of bulk ultrafine-microstructure eutectic high-entropy alloys with outstanding thermal stability. Scr Mater. 2019;165:145–149. doi: 10.1016/j.scriptamat.2019.02.035
  • Jiang H, Han KM, Gao XX, et al. A new strategy to design eutectic high-entropy alloys using simple mixture method. Mater Des. 2018;142:101–105. doi: 10.1016/j.matdes.2018.01.025
  • Komura Y, Tokunaga K. Structural studies of stacking variants in Mg-base Friauf-Laves phases. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem. 1980;36:1548–1554. doi: 10.1107/S0567740880006565
  • Jiang H, Han KM, Qiao DX, et al. Effects of Ta addition on the microstructures and mechanical properties of CoCrFeNi high entropy alloy. Mater Chem Phys. 2018;210:43–48. doi: 10.1016/j.matchemphys.2017.05.056
  • Lim KR, Lee KS, Lee JS, et al. Dual-phase high-entropy alloys for high-temperature structural applications. J Alloys Compd. 2017;728:1235–1238. doi: 10.1016/j.jallcom.2017.09.089
  • Senkov ON, Wilks GB, Scott JM, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics. 2011;19:698–706. doi: 10.1016/j.intermet.2011.01.004
  • Duan YH, Huang B, Sun Y, et al. Stability, elastic properties and electronic structures of the stable Zr-Al intermetallic compounds: A first-principles investigation. J Alloy Compds. 2014;590:50–60. doi: 10.1016/j.jallcom.2013.12.079
  • Troparevsky MC, Morris JR, Kent PRC, et al. Criteria for predicting the formation of single-phase high-entropy alloys. Phys Rev X. 2015;5:11041.
  • Zhu YT, Liao XZ, Wu XL. Deformation twinning in nanocrystalline materials. Prog Mater Sci. 2012;57:1. doi: 10.1016/j.pmatsci.2011.05.001