5,798
Views
110
CrossRef citations to date
0
Altmetric
Original Report

Selective laser melting enabling the hierarchically heterogeneous microstructure and excellent mechanical properties in an interstitial solute strengthened high entropy alloy

, , , , , , , & show all
Pages 453-459 | Received 17 Jul 2019, Published online: 02 Aug 2019

References

  • Zhang Y, Zuo TT, Tang Z, et al. Microstructure and mechanical properties of high-entropy alloys. Prog Mater Sci. 2014;61:1–93. doi: 10.1016/j.pmatsci.2013.10.001
  • He JY, Wang H, Huang HL, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 2016;102:187–196. doi: 10.1016/j.actamat.2015.08.076
  • Yang T, Zhao YL, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science. 2018;362:933–937. doi: 10.1126/science.aas8815
  • Lei ZF, Liu XJ, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complex. Nature. 2018;563:546–550. doi: 10.1038/s41586-018-0685-y
  • Li ZM, Tasan CC, Springer H, et al. Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys. Sci Rep. 2017;7:40704. doi: 10.1038/srep40704
  • Seol JB, Bae JW, Li ZM, et al. Boron doped ultrastrong and ductile high-entropy alloys. Acta Mater. 2018;151:366–376. doi: 10.1016/j.actamat.2018.04.004
  • Fu S, Bei H, Chen Y, et al. Deformation mechanisms and work hardening behavior of transformation-induced plasticity high entropy alloys by in-situ neutron diffraction. Mater Res Lett. 2018;6:620–626. doi: 10.1080/21663831.2018.1523239
  • Li Z, Pradeep KG, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature. 2016;534:227–230. doi: 10.1038/nature17981
  • Wei DX, Li XQ, Heng WC, et al. Novel Co-rich high entropy alloys with superior tensile properties. Mater Res Lett. 2019;7:82–88. doi: 10.1080/21663831.2018.1553803
  • Lu WJ, Liebscher CH, Dehm G, et al. Bidirectional transformation enables hierarchical nanolaminate dual-phase high-entropy alloys. Adv Mater. 2018;30:1804727. doi: 10.1002/adma.201804727
  • Liu SY, Wei YJ. The Gaussian distribution of lattice size and atomic level heterogeneity in high entropy alloys. Extreme Mech Lett. 2017;11:84–88. doi: 10.1016/j.eml.2016.10.007
  • Su J, Raabe D, Li ZM. Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy. Acta Mater. 2019;163:40–54. doi: 10.1016/j.actamat.2018.10.017
  • DebRoy T, Wei HL, Zuback JS, et al. Additive manufacturing of metallic components – process, structure and properties. Prog Mater Sci. 2018;92:112–224. doi: 10.1016/j.pmatsci.2017.10.001
  • Suryawanshi J, Prashanth KG, Scudion S, et al. Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting. Acta Mater. 2016;115:285–294. doi: 10.1016/j.actamat.2016.06.009
  • Wang YM, Voisin T, Mckeown JT, et al. Additively manufactured hierarchical stainless steels with high strength and ductility. Nat Mater. 2018;17:63–71. doi: 10.1038/nmat5021
  • Zhou R, Liu Y, Liu B, et al. Precipitation behavior of selective laser melted FeCoCrNiC0.05 high entropy alloy. Intermetallics. 2019;106:20–25. doi: 10.1016/j.intermet.2018.12.001
  • Park JM, Choe JH, Kim JG, et al. Superior tensile properties of 1%C-CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting. Mater Res Lett. 2019;1638844:1–7. doi: 10.1080/21663831.2019.1638844
  • Zhu ZG, Nguyen QB, Ng FL, et al. Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting. Scr Mater. 2018;154:20–24. doi: 10.1016/j.scriptamat.2018.05.015
  • Demir E, Raabe D, Zaafarani N, et al. Investigation of the indentation size effect through the measurement of the geometrically necessary dislocation beneath small indents of different depths using EBSD tomography. Acta Mater. 2009;57:559–569. doi: 10.1016/j.actamat.2008.09.039
  • Miao J, Slone CE, Smith TM, et al. The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy. Acta Mater. 2017;132:35–48. doi: 10.1016/j.actamat.2017.04.033
  • An XH, Wu SD, Wang ZG, et al. Significance of stacking fault energy in bulk nanostructured materials: Insights from Cu and its binary alloys as model systems. Prog Mater Sci. 2019;101:1–45. doi: 10.1016/j.pmatsci.2018.11.001
  • Williamson GK, Hall WH. X-ray line broadening from filed aluminum and wolfram. Acta Metall. 1953;1:22–31. doi: 10.1016/0001-6160(53)90006-6
  • Sun SJ, Tian YZ, An XH, et al. Ultrahigh cryogenic strength and exceptional ductility in ultrafine-grained CoCrFeMnNi high-entropy alloy. Mater Tod Nano. 2018;4:46–53. doi: 10.1016/j.mtnano.2018.12.002
  • Smith TR, Sugar JD, Marchi CS, et al. Strengthening mechanisms in directed energy deposited austenitic stainless steel. Acta Mater. 2019;164:728–740. doi: 10.1016/j.actamat.2018.11.021
  • An XH, Wu SD, Zhang ZF, et al. Evolution of microstructural homogeneity in copper processed by high-pressure torsion. Scr Mater. 2010;63:560–563. doi: 10.1016/j.scriptamat.2010.05.030
  • Wu XL, Zhu YT. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Lett. 2017;5:527–532. doi: 10.1080/21663831.2017.1343208
  • Yang MX, Pan Y, Yuan FP, et al. Back stress strengthening and strain hardening in gradient structure. Mater Res Lett. 2016;4:145–151. doi: 10.1080/21663831.2016.1153004