3,226
Views
26
CrossRef citations to date
0
Altmetric
Original Report

Peierls barrier characteristic and anomalous strain hardening provoked by dynamic-strain-aging strengthening in a body-centered-cubic high-entropy alloy

, ORCID Icon, , , , ORCID Icon, , , , ORCID Icon & show all
Pages 475-481 | Received 01 Jul 2019, Published online: 27 Aug 2019

References

  • Argon A. Strengthening mechanisms in crystal plasticity. New York: Oxford University Press on Demand; 2008.
  • Wu Z, Bei H, Pharr GM, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 2014;81:428–441. doi: 10.1016/j.actamat.2014.08.026
  • Hutchison MM. The temperature dependence of the yield stress of polycrystalline iron. Philos Mag. 1963;8:121–127. doi: 10.1080/14786436308212493
  • Bechtold JH. Tensile properties of annealed tantalum at low temperatures. Acta Metall. 1955;3:249–254. doi: 10.1016/0001-6160(55)90060-2
  • Feltham P, Copley GJ. Yielding and work-hardening in alpha-brasses. Acta Metall. 1960;8:542–550. doi: 10.1016/0001-6160(60)90108-5
  • Dieter GE, Bacon DJ. Mechanical metallurgy. New York: McGraw-hill; 1986.
  • Abbaschian R, Reed-Hill RE. Physical metallurgy principles. Stamford: Cengage Learning; 2008.
  • Podolskiy AV, Tabachnikova ED, Voloschuk VV, et al. Mechanical properties and thermally activated plasticity of the Ti30Zr25Hf15Nb20Ta10 high entropy alloy at temperatures 4.2–350 K. Mater Sci Eng A. 2018;710:136–141. doi: 10.1016/j.msea.2017.10.073
  • Senkov ON, Wilks GB, Scott JM, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics. 2011;19:698–706. doi: 10.1016/j.intermet.2011.01.004
  • Gopinath K, Gogia AK, Kamat SV, et al. Tensile properties of Ni-based superalloy 720Li: temperature and strain rate effects. Metall Mater Trans A. 2008;39:2340–2350. doi: 10.1007/s11661-008-9585-3
  • Peng K, Qian K, Chen W. Effect of dynamic strain aging on high temperature properties of austenitic stainless steel. Mater Sci Eng A. 2004;379:372–377. doi: 10.1016/j.msea.2004.03.004
  • van den Beukel A. Theory of the effect of dynamic strain aging on mechanical properties. Phys Status Solidi (a). 1975;30:197–206. doi: 10.1002/pssa.2210300120
  • Chen SY, Tong Y, Tseng KK, et al. Phase transformations of HfNbTaTiZr high-entropy alloy at intermediate temperatures. Scripta Mater. 2019;158:50–56. doi: 10.1016/j.scriptamat.2018.08.032
  • Zhao YY, Lei ZF, Lu ZP, et al. A simplified model connecting lattice distortion with friction stress of Nb-based equiatomic high-entropy alloys. Mater Res Lett. 2019;7:340–346. doi: 10.1080/21663831.2019.1610105
  • Joós B, Duesbery MS. The Peierls stress of dislocations: an analytic formula. Phys Rev Lett. 1997;78:266–269. doi: 10.1103/PhysRevLett.78.266
  • Poliak E, Jonas J. Initiation of dynamic recrystallization in constant strain rate hot deformation. ISIJ Int. 2003;43:684–691. doi: 10.2355/isijinternational.43.684
  • Liang R, Khan AS. A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures. Int J Plast. 1999;15:963–980. doi: 10.1016/S0749-6419(99)00021-2
  • Ardell AJ. Precipitation hardening. Metall Trans A. 1985;16:2131–2165. doi: 10.1007/BF02670416
  • Zhang Y, Liu JP, Chen SY, et al. Serration and noise behaviors in materials. Prog Mater Sci. 2017;90:358–460. doi: 10.1016/j.pmatsci.2017.06.004
  • Mulford RA, Kocks UF. New observations on the mechanisms of dynamic strain aging and of jerky flow. Acta Metall. 1979;27:1125–1134. doi: 10.1016/0001-6160(79)90130-5
  • Barat P, Sarkar A, Mukherjee P, et al. Scaling behavior of the Portevin–Le Chatelier effect in an Al-2.5%Mg alloy. Phys Rev Lett. 2005;94:055502. doi: 10.1103/PhysRevLett.94.055502
  • Madec R, Devincre B, Kubin LP. From dislocation junctions to forest hardening. Phys Rev Lett. 2002;89:255508. doi: 10.1103/PhysRevLett.89.255508
  • Soare MA, Curtin WA. Solute strengthening of both mobile and forest dislocations: the origin of dynamic strain aging in fcc metals. Acta Mater. 2008;56:4046–4061. doi: 10.1016/j.actamat.2008.04.027
  • Lebyodkin MA, Brechet Y, Estrin Y, et al. Statistics of the catastrophic slip events in the Portevin–Le Chatelier effect. Phys Rev Lett. 1995;74:4758–4761. doi: 10.1103/PhysRevLett.74.4758
  • Samuel KG, Mannan SL, Rodriguez P. Another manifestation of dynamic strain ageing. J Mater Sci Lett. 1996;15:1697–1699. doi: 10.1007/BF00636198
  • Rizzi E, Hähner P. On the Portevin–Le Chatelier effect: theoretical modeling and numerical results. Int J Plast. 2004;20:121–165. doi: 10.1016/S0749-6419(03)00035-4
  • Hähner P. On the physics of the Portevin-Le Châtelier effect part 1: the statistics of dynamic strain ageing. Mater Sci Eng A. 1996;207:208–215. doi: 10.1016/0921-5093(95)10033-4
  • Dieter GE, Bacon DJ. Mechanical metallurgy. New York: McGraw-Hill; 1986.
  • Torganchuk V, Belyakov A, Kaibyshev R. Effect of rolling temperature on microstructure and mechanical properties of 18%Mn TWIP/TRIP steels. Mater Sci Eng A. 2017;708:110–117. doi: 10.1016/j.msea.2017.09.122
  • Keralavarma SM, Bower AF, Curtin WA. Quantum-to-continuum prediction of ductility loss in aluminium–magnesium alloys due to dynamic strain aging. Nat Commun. 2014;5:4604. doi: 10.1038/ncomms5604
  • Tsai C-W, Lee C, Lin P-T, et al. Portevin-Le Chatelier mechanism in face-centered-cubic metallic alloys from low to high entropy. Int J Plasticity. 2019. doi: 10.1016/j.ijplas.2019.07.003