1,606
Views
13
CrossRef citations to date
0
Altmetric
Original Report

Effects of electron–phonon coupling on damage accumulation in molecular dynamics simulations of irradiated nickel

ORCID Icon, ORCID Icon & ORCID Icon
Pages 490-495 | Received 11 Apr 2019, Published online: 28 Aug 2019

References

  • Duffy DM, Rutherford AM. Including the effects of electronic stopping and electron-ion interactions in radiation damage simulations. J Phys Condens Mat. 2007;19:016207.
  • Rutherford AM, Duffy DM. The effect of electron-ion interactions on radiation damage simulations. J Phys Condens Mat. 2007;19:496201.
  • Duffy DM, Khakshouri S, Rutherford AM. Electronic effects in radiation damage simulations. Nucl Instrum Methods Phys Res Sect B. 2009;267:3050–3054.
  • Zarkadoula E, Daraszewic SL, Duffy DM, et al. Electronic effects in high-energy radiation damage in iron. J Phys Condens Matter. 2014;26:085401.
  • Zarkadoula E, Duffy DM, Nordlund K, et al. Electronic effects in high-energy radiation damage in tungsten. J Phys Condens Matter. 2015;27:135401.
  • Zarkadoula E, Samolyuk G, Xue H, et al. Effects of two-temperature model on cascade evolution in Ni and NiFe. Scripta Mater. 2016;124:6–10.
  • Zarkadoula E, Samolyuk G, Weber WJ. Two-temperature model in molecular dynamics simulations of cascades in i-based alloys. J Alloys Compd. 2017;700:106–112.
  • Zarkadoula E, Samolyuk G, Weber WJ. Effects of electronic excitation on cascade dynamics in nickel-iron and nickel-palladium systems. Scripta Mater. 2017;138:124–129.
  • Zarkadoula E, Samolyuk G, Weber WJ. Effects of electronic excitation in 150 keV Ni ion irradiation of metallic systems. AIP Adv. 2018;8:015121.
  • Wu Z, Bei H, Otto F, et al. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics. 2014;46:131–140.
  • Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014;345:1153–1158.
  • Senkov ON, Wilks GB, Miracle DB, et al. Refractory highentropy alloys. Intermetallics. 2010;18:1758–1765.
  • Chuang MH, Tsai MH, Wang WR, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 2011;59:6308–6317.
  • Ma SG, Zhang Y. Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Mat Sci Eng A. 2012;532:480–486.
  • Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1–93.
  • Wu Z, Bei H, Pharr GM, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 2014;81:428–441.
  • Zarkadoula E, Samolyuk G, Weber WJ. Effects of electron-phonon coupling and electronic thermal conductivity in high energy irradiation of nickel. Comput Mater Sci. 2019;162:156–161.
  • Seaton MA, Todorov IT, Daraszewicz SL, et al. Domain decomposition of the two-temperature model in DL_POLY 4. Mol Simul. 2018. doi:10.1080/08927022.2018.1511902.
  • Bonny G, Castin N, Terentyev D. Interatomic potential for studying ageing under irradiation in stainless steels: the FeNiCr model alloy. Model Simul Mater Sci Eng. 2013;21:85004.
  • E Zhurkin, A Kolesnikov. Atomic scale modelling of Al and Ni(111) surface erosion under cluster impact. Nucl Instr Methods Phys Res Sect B. 2003;202:269–277.
  • http://www.srim.org/
  • Jin K, Sales BC, Stocks GM, et al. Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity. Sci Rep. 2016;6:20159.
  • Samolyuk GD, Béland LK, Stocks GM, et al. Electron–phonon coupling in Ni based binary alloys with application to displacement cascade modeling. J Phys Condens Mat. 2016;28:175501.
  • Stukowski A. Visualization and analysis of atomistic simulation data with OVITO – the open visualization tool model. Simul Mater Sci Eng. 2010;18:015012.
  • Stukowski A, Bulatov VV, Arsenlis A. Automated identification and indexing of dislocations in crystal interfaces. Model Simul Mater SC. 2012;20:8.