2,724
Views
13
CrossRef citations to date
0
Altmetric
Original Report

Anisotropic exchange in Nd–Fe–B permanent magnets

, ORCID Icon, , ORCID Icon &
Pages 89-96 | Received 10 Aug 2019, Published online: 18 Dec 2019

References

  • Gutfleisch O, Willard MA, Brück E, et al. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv Mater. 2011;23(7):821–842. doi: 10.1002/adma.201002180
  • Peng RC, Hu JM, Yang T, et al. Switching the chirality of a magnetic vortex deterministically with an electric field. Mater Res Lett. 2018;6(12):669–675. doi: 10.1080/21663831.2018.1538022
  • Bennett S, Herklotz A, Cress C, et al. Magnetic order multilayering in FeRh thin films by He-Ion irradiation. Mater Res Lett. 2017;6(1):106–112. doi: 10.1080/21663831.2017.1402098
  • Rivin O, Caspi E, Pesach A, et al. Evidence for ferromagnetic ordering in the MAX phase (Cr0.96Mn0.04)2GeC. Mater Res Lett. 2017;5(7):465–471. doi: 10.1080/21663831.2017.1317295
  • Hono K, Sepehri-Amin H. Prospect for HRE-free high coercivity Nd-Fe-B permanent magnets. Scr Mater. 2018;151:6–13. doi: 10.1016/j.scriptamat.2018.03.012
  • Skokov K, Gutfleisch O. Heavy rare earth free, free rare earth and rare earth free magnets-vision and reality. Scr Mater. 2018;154:289–294. doi: 10.1016/j.scriptamat.2018.01.032
  • Hirosawa S, Nishino M, Miyashita S. Perspectives for high-performance permanent magnets: applications, coercivity, and new materials. Adv Nat Sci Nanosci Nanotechnol. 2017;8(1):013002. doi: 10.1088/2043-6254/aa597c
  • Yi M, Zhang H, Gutfleisch O, et al. Multiscale examination of strain effects in Nd-Fe-B permanent magnets. Phys Rev Appl. 2017;8(1):014011. doi: 10.1103/PhysRevApplied.8.014011
  • Hrkac G, Woodcock TG, Freeman C, et al. The role of local anisotropy profiles at grain boundaries on the coercivity of Nd2Fe14B magnets. Appl Phys Lett. 2010;97(23):232511. doi: 10.1063/1.3519906
  • Bance S, Fischbacher J, Schrefl T, et al. Micromagnetics of shape anisotropy based permanent magnets. J Magn Magn Mater. 2014;363:121–124. doi: 10.1016/j.jmmm.2014.03.070
  • Erokhin S, Berkov D. Optimization of nanocomposite materials for permanent magnets: micromagnetic simulations of the effects of intergrain exchange and the shapes of hard grains. Phys Rev Appl. 2017;7(1):014011. doi: 10.1103/PhysRevApplied.7.014011
  • Yi M, Gutfleisch O, Xu BX. Micromagnetic simulations on the grain shape effect in Nd-Fe-B magnets. J Appl Phys. 2016;120(3):033903. doi: 10.1063/1.4958697
  • Sepehri-Amin H, Ohkubo T, Gruber M, et al. Micromagnetic simulations on the grain size dependence of coercivity in anisotropic Nd-Fe-B sintered magnets. Scr Mater. 2014;89:29–32. doi: 10.1016/j.scriptamat.2014.06.020
  • Liu J, Sepehri-Amin H, Ohkubo T, et al. Grain size dependence of coercivity of hot-deformed Nd-Fe-B anisotropic magnets. Acta Mater. 2015;82:336–343. doi: 10.1016/j.actamat.2014.09.021
  • Ohkubo T, Abe T, Hirosawa S, et al. Faceted shell structure in grain boundary diffusion-processed sintered Nd-Fe-B magnets. J Alloy Compd. 2014;617:884–892. doi: 10.1016/j.jallcom.2014.07.166
  • Li W, Sepehri-Amin H, Ohkubo T, et al. Distribution of Dy in high-coercivity (Nd,Dy)-Fe-B sintered magnet. Acta Mater. 2011;59(8):3061–3069. doi: 10.1016/j.actamat.2011.01.046
  • Helbig T, Loewe K, Sawatzki S, et al. Experimental and computational analysis of magnetization reversal in (Nd, Dy)-Fe-B core shell sintered magnets. Acta Mater. 2017;127:498–504. doi: 10.1016/j.actamat.2017.01.055
  • Wu D, Yue M, Liu W, et al. Magnetic domain switching in Nd–Fe–B sintered magnets with superior magnetic properties. Mater Res Lett. 2018;6(4):255–260. doi: 10.1080/21663831.2018.1437571
  • Woodcock T, Ramasse Q, Hrkac G, et al. Atomic-scale features of phase boundaries in hot deformed Nd-Fe-Co-B-Ga magnets infiltrated with a Nd–Cu eutectic liquid. Acta Mater. 2014;77:111–124. doi: 10.1016/j.actamat.2014.05.045
  • Sawatzki S, Kübel C, Ener S, et al. Grain boundary diffusion in nanocrystalline Nd-Fe-B permanent magnets with low-melting eutectics. Acta Mater. 2016;115:354–363. doi: 10.1016/j.actamat.2016.05.048
  • Soderžnik M, Sepehri-Amin H, Sasaki T, et al. Magnetization reversal of exchange-coupled and exchange-decoupled Nd-Fe-B magnets observed by magneto-optical Kerr effect microscopy. Acta Mater. 2017;135:68–76. doi: 10.1016/j.actamat.2017.05.006
  • Skomski R, Coey J. Giant energy product in nanostructured two-phase magnets. Phys Rev B. 1993;48(21):15812. doi: 10.1103/PhysRevB.48.15812
  • Hadjipanayis G, Withanawasam L, Krause R. Nanocomposite R2Fe14B/α-Fe permanent magnets. IEEE Trans Magn. 1995;31(6):3596–3601. doi: 10.1109/20.489581
  • Skomski R. Nanomagnetics. J Phys Condens Matter. 2003;15(20):R841. doi: 10.1088/0953-8984/15/20/202
  • Hirosawa S, Matsuura Y, Yamamoto H, et al. Magnetization and magnetic anisotropy of R2Fe14B measured on single crystals. J Appl Phys. 1986;59(3):873–879. doi: 10.1063/1.336611
  • Durst KD, Kronmüller H. Determination of intrinsic magnetic material parameters of Nd2Fe14B from magnetic measurements of sintered Nd15Fe77B8 magnets. J Magn Magn Mater. 1986;59(1–2):86–94. doi: 10.1016/0304-8853(86)90014-4
  • Givord D, Li H. Magnetic properties of Y2Fe14B and Nd2Fe14B single crystals. Solid State Commun. 1993;88(11–12):907–910. doi: 10.1016/0038-1098(93)90267-Q
  • Haskel D, Lang J, Islam Z, et al. Atomic origin of magnetocrystalline anisotropy in Nd2Fe14B. Phys Rev Lett. 2005;95(21):217207. doi: 10.1103/PhysRevLett.95.217207
  • Ogawa D, Koike K, Kato H, et al. Evaluation of interlayer exchange coupling in α-Fe(100)/Nd2Fe14B(001) films. J Korean Phys Soc. 2013;63(3):489–492. doi: 10.3938/jkps.63.489
  • Toga Y, Moriya H, Tsuchiura H, et al. First principles study on interfacial electronic structures in exchange-spring magnets. J Phys Conf Ser. 2011;266(1):012046.
  • Ogawa D, Koike K, Mizukami S, et al. Negative exchange coupling in Nd2Fe14B(100)/α-Fe interface. Appl Phys Lett. 2015;107(10):102406. doi: 10.1063/1.4930829
  • Umetsu N, Sakuma A, Toga Y. First-principles study of interface magnetic structure in Nd2Fe14B/(Fe, Co) exchange spring magnets. Phys Rev B. 2016;93(1):014408. doi: 10.1103/PhysRevB.93.014408
  • Sepehri-Amin H, Ohkubo T, Nagashima S, et al. High-coercivity ultrafine-grained anisotropic Nd–Fe–B magnets processed by hot deformation and the Nd–Cu grain boundary diffusion process. Acta Mater. 2013;61(17):6622–6634. doi: 10.1016/j.actamat.2013.07.049
  • Zickler GA, Fidler J, Bernardi J, et al. A combined TEM/STEM and micromagnetic study of the anisotropic nature of grain boundaries and coercivity in Nd-Fe-B magnets. Adv Mater Sci Eng. 2017;2017:6412042.
  • Zickler GA, Fidler J. Nanocompositional electron microscopic analysis and role of grain boundary phase of isotropically oriented Nd-Fe-B magnets. Adv Mater Sci Eng. 2017;2017:1461835.
  • Evans RF, Fan WJ, Chureemart P, et al. Atomistic spin model simulations of magnetic nanomaterials. J Phys Condens Matter. 2014;26(10):103202. doi: 10.1088/0953-8984/26/10/103202
  • Toga Y, Matsumoto M, Miyashita S, et al. Monte Carlo analysis for finite-temperature magnetism of Nd2Fe14B permanent magnet. Phys Rev B. 2016;94(17):174433. doi: 10.1103/PhysRevB.94.174433
  • Nishino M, Toga Y, Miyashita S, et al. Atomistic-model study of temperature-dependent domain walls in the neodymium permanent magnet Nd2Fe14B. Phys Rev B. 2017;95(9):094429. doi: 10.1103/PhysRevB.95.094429
  • Toga Y, Nishino M, Miyashita S, et al. Anisotropy of exchange stiffness based on atomic-scale magnetic properties in the rare-earth permanent magnet Nd2Fe14B. Phys Rev B. 2018;98(5):054418. doi: 10.1103/PhysRevB.98.054418
  • Gong Q, Yi M, Evans R, et al. Calculating temperature-dependent properties of Nd2Fe14B permanent magnets by atomistic spin model simulations. Phys Rev B. 2019;99(21):214409. doi: 10.1103/PhysRevB.99.214409
  • Gong Q, Yi M, Xu BX. Multiscale simulations toward calculating coercivity of Nd-Fe-B permanent magnets at high temperatures. Phys Rev Mater. 2019;3(8):084406.
  • Tatetsu Y, Tsuneyuki S, Gohda Y. First-principles study of the role of Cu in improving the coercivity of Nd-Fe-B permanent magnets. Phys Rev Appl. 2016;6(6):064029. doi: 10.1103/PhysRevApplied.6.064029
  • Toga Y, Suzuki T, Sakuma A. Effects of trace elements on the crystal field parameters of Nd ions at the surface of Nd2Fe14B grains. J Appl Phys. 2015;117(22):223905. doi: 10.1063/1.4922500
  • Suzuki T, Toga Y, Sakuma A. Effects of deformation on the crystal field parameter of the Nd ions in Nd2Fe14B. J Appl Phys. 2014;115(17):17A703. doi: 10.1063/1.4860937
  • Vansteenkiste A, Leliaert J, Dvornik M, et al. The design and verification of MuMax3. AIP Adv. 2014;4(10):107133. doi: 10.1063/1.4899186
  • Kronmüller H, Fähnle M. Micromagnetism and the microstructure of ferromagnetic solids. Cambridge University Press, Cambridge, 2009.
  • Ono K, Inami N, Saito K, et al. Observation of spin-wave dispersion in Nd-Fe-B magnets using neutron brillouin scattering. J Appl Phys. 2014;115(17):17A714. doi: 10.1063/1.4863380
  • Sakuma A, Suzuki T, Furuuchi T, et al. Magnetism of Nd-Fe films as a model of grain boundary phase in Nd-Fe-B permanent magnets. Appl Phys Express. 2015;9(1):013002. doi: 10.7567/APEX.9.013002
  • Murakami Y, Tanigaki T, Sasaki T, et al. Magnetism of ultrathin intergranular boundary regions in Nd-Fe-B permanent magnets. Acta Mater. 2014;71:370–379. doi: 10.1016/j.actamat.2014.03.013
  • Sepehri-Amin H, Ohkubo T, Shima T, et al. Grain boundary and interface chemistry of an Nd-Fe-B-based sintered magnet. Acta Mater. 2012;60(3):819–830. doi: 10.1016/j.actamat.2011.10.043