1,469
Views
12
CrossRef citations to date
0
Altmetric
Original Reports

Role of interfacial transition zones in the fracture of Cu/V nanolamellar multilayers

, , , , ORCID Icon, & ORCID Icon show all
Pages 299-306 | Received 21 Jan 2020, Published online: 28 Apr 2020

References

  • Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat Rev Mater. 2016;1:16019. doi: 10.1038/natrevmats.2016.19
  • Han W, Demkowicz MJ, Mara NA, et al. Design of radiation tolerant materials via interface engineering. Adv Mater. 2013;25(48):6975–6979. doi: 10.1002/adma.201303400
  • Zeng LF, Gao R, Fang QF, et al. High strength and thermal stability of bulk Cu/Ta nanolamellar multilayers fabricated by cross accumulative roll bonding. Acta Mater. 2016;110:341–351. doi: 10.1016/j.actamat.2016.03.034
  • Zeng LF, Gao R, Xie ZM, et al. Development of interface-dominant bulk Cu/V nanolamellar composites by cross accumulative roll bonding. Sci Rep. 2017;7:40742. doi: 10.1038/srep40742
  • Guo Q, Thompson GB. Evolution of in situ growth stresses and interfacial structure in phase changing Cu/V multilayered thin films. Acta Mater. 2018;148:63–71 doi: 10.1016/j.actamat.2018.01.023
  • Ohsaki S, Kato S, Tsuji N, et al. Bulk mechanical alloying of Cu–Ag and Cu/Zr two-phase microstructures by accumulative roll-bonding process. Acta Mater. 2007;55(8):2885–2895. doi: 10.1016/j.actamat.2006.12.027
  • Sauvage X, Dinda GP, Wilde G. Non-equilibrium intermixing and phase transformation in severely deformed Al/Ni multilayers. Scripta Mater. 2007;56(3):181–184. doi: 10.1016/j.scriptamat.2006.10.021
  • Wei S, Zhang L, Zheng S, et al. Deformation-induced interfacial transition zone in Cu/V nanolamellar multilayers. Scripta Mater. 2019;159:104–108. doi: 10.1016/j.scriptamat.2018.09.031
  • Li YP, Zhang GP. On plasticity and fracture of nanostructured Cu/X (X = Au, Cr) multilayers: the effects of length scale and interface/boundary. Acta Mater. 2010;58(11):3877–3887. doi: 10.1016/j.actamat.2010.03.042
  • Wang Y, Li J, Hamza AV, et al. Ductile crystalline–amorphous nanolaminates. Proc Natl Acad Sci. 2007;104(27):11155–11160. doi: 10.1073/pnas.0702344104
  • Koyama M, Zhang Z, Wang M, et al. Bone-like crack resistance in hierarchical metastable nanolaminate steels. Science. 2017;355(6329):1055–1057. doi: 10.1126/science.aal2766
  • Gao H, Ji B, Jäger IL, et al. Materials become insensitive to flaws at nanoscale: lessons from nature. Proc Natl Acad Sci. 2003;100(10):5597–5600. doi: 10.1073/pnas.0631609100
  • Zhang J, Zhang X, Wang R, et al. Length-scale-dependent deformation and fracture behavior of Cu/X (X = Nb, Zr) multilayers: the constraining effects of the ductile phase on the brittle phase. Acta Mater. 2011;59(19):7368–7379. doi: 10.1016/j.actamat.2011.08.016
  • Zhu X, Zhang B, Gao J, et al. Evaluation of the crack-initiation strain of a Cu–Ni multilayer on a flexible substrate. Scripta Mater. 2009;60(3):178–181. doi: 10.1016/j.scriptamat.2008.10.004
  • Wei MZ, Cao ZH, Shi J, et al. Evolution of interfacial structures and creep behavior of Cu/Ta multilayers at room temperature. Mater Sci Engin A. 2015;646:163–168. doi: 10.1016/j.msea.2015.08.068
  • Raabe D, Ohsaki S, Hono K. Mechanical alloying and amorphization in Cu–Nb–Ag in situ composite wires studied by transmission electron microscopy and atom probe tomography. Acta Mater. 2009;57(17):5254–5263. doi: 10.1016/j.actamat.2009.07.028
  • Koyama M, Zhang Z, Wang M, et al. Bone-like crack resistance in hierarchical metastable nanolaminate steels. Science. 2017;355(6329):1055–1057. doi: 10.1126/science.aal2766
  • Beyerlein IJ, Mayeur JR, Zheng S, et al. Emergence of stable interfaces under extreme plastic deformation. Proc Natl Acad Sci. 2014;111(12):4386–4390. doi: 10.1073/pnas.1319436111
  • Wang J, Zhou Q, Shao S, et al. Strength and plasticity of nanolaminated materials. Mater Res Lett. 2017;5(1):1–19. doi: 10.1080/21663831.2016.1225321
  • Kormout KS, Pippan R, Bachmaier A. Deformation-induced supersaturation in immiscible material systems during high-pressure torsion. Adv Eng Mater. 2017;19(4):1600675. doi: 10.1002/adem.201600675
  • Gong L, Su Q, Deng H, et al. The stability and diffusion properties of foreign impurity atoms on the surface and in the bulk of vanadium: a first-principles study. Comput Mater Sci. 2014;81:191–198. doi: 10.1016/j.commatsci.2013.08.011
  • Radchenko I, Anwarali H, Tippabhotla S, et al. Effects of interface shear strength during failure of semicoherent metal–metal nanolaminates: an example of accumulative roll-bonded Cu/Nb. Acta Mater. 2018;156(1):125–135. doi: 10.1016/j.actamat.2018.06.023
  • Hattar K, Misra A, Dosanjh M, et al. Direct observation of crack propagation in copper–niobium multilayers. J Eng Mater Technol. 2012;134(2):021014. doi: 10.1115/1.4005953
  • Zheng SJ, Wang J, Carpenter JS, et al. Plastic instability mechanisms in bimetallic nanolayered composites. Acta Mater. 2014;79(41):282–291. doi: 10.1016/j.actamat.2014.07.017
  • Zhao YF, Zhang JY, Wang YQ, et al. Unusual plastic deformation behavior of nanotwinned Cu/high entropy alloy FeCoCrNi nanolaminates. Nanoscale. 2019;11(23):11340–11350. doi: 10.1039/C9NR00836E
  • GRÖGER. Stress dependence of the Peierls barrier of 1/2⟨111⟩ screw dislocations in bcc metals. Acta Mater. 2013;61(17):6362–6371. doi: 10.1016/j.actamat.2013.06.047
  • Xu S, Su Y. Dislocation nucleation from symmetric tilt grain boundaries in body-centered cubic vanadium. Phys Lett A. 2018;382(17):1185–1189. doi: 10.1016/j.physleta.2018.03.002
  • Zheng S, Beyerlein IJ, Carpenter JS, et al. High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces. Nat Commun. 2013;4:1696. doi: 10.1038/ncomms2651
  • Han WZ, Carpenter JS, Wang J, et al. Atomic-level study of twin nucleation from face-centered-cubic/body-centered-cubic interfaces in nanolamellar composites. Appl Phys Lett. 2012;100(1):011911. doi: 10.1063/1.3675447
  • Jian W, Hoagland GR, et al. Room-temperature dislocation climb in metallic interfaces. Appl Phys Lett. 2009;94(13):131910. doi: 10.1063/1.3111137
  • Li N, Wang J, Huang JY, et al. In situ TEM observations of room temperature dislocation climb at interfaces in nanolayered Al/Nb composites. Scripta Mater. 2010;63(4):363–366. doi: 10.1016/j.scriptamat.2010.04.005