1,772
Views
22
CrossRef citations to date
0
Altmetric
Reports

Uncovering the mechanism of dislocation interaction with nanoscale (<4 nm) interphase precipitates in microalloyed ferritic steels

, , , &
Pages 341-347 | Received 10 Feb 2020, Published online: 19 May 2020

References

  • Funakawa Y, Shiozaki T, Tomita K, et al. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides. ISIJ Int. 2004;44:1945–1951.
  • Funakawa Y, Fujita T, Yamada K. Metallurgical features of Nanohiten™ and application to warm stamping. JFE Tech Rep 2013;74–79.
  • Chen MY, Gouné M, Verdier M, et al. Interphase precipitation in vanadium-alloyed steels: strengthening contribution and morphological variability with austenite to ferrite transformation. Acta Mater. 2014;64:78–92.
  • Kamikawa N, Abe Y, Miyamoto G, et al. Tensile behavior of Ti, Mo-added low carbon steels with interphase precipitation. ISIJ Int. 2014;54:474–474.
  • Mukherjee S, Timokhina I, Zhu C, et al. Clustering and precipitation processes in a ferritic titanium-molybdenum microalloyed steel. J Alloys Compd. 2017;690:621–632.
  • Dhara S, Marceau RKW, Wood K, et al. Precipitation and clustering in a Ti-Mo steel investigated using atom probe tomography and small-angle neutron scattering. Mater Sci Eng A. 2018;718:74–86.
  • Chen CY, Yen HW, Kao FH, et al. Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides. Mater Sci Eng A. 2009;499(1):162 – 166.
  • Jang JH, Heo Y-U, Lee C-H, et al. Interphase precipitation in Ti-Nb and Ti-Nb-Mo bearing steel. Mater Sci Technol. 2013; 29:309–313.
  • Yen HW, Chen PY, Huang CY, et al. Interphase precipitation of nanometer-sized carbides in a titanium–molybdenum-bearing low-carbon steel. Acta Mater. 2011;59(16):6264–6274.
  • Kestenbach HJ, Campos SS, Morales EV. Role of interphase precipitation in microalloyed hot strip steels. Met Sci J. 2006;22(6):615–626.
  • Mukherjee S, Timokhina IB, Zhu C, et al. Three-dimensional atom probe microscopy study of interphase precipitation and nanoclusters in thermomechanically treated titanium–molybdenum steels. Acta Mater. 2013;61(7):2521–2530.
  • Zhang YJ, Miyamoto G, Shinbo K, et al. Effects of transformation temperature on VC interphase precipitation and resultant hardness in low-carbon steels. Acta Mater. 2015;84:375–384.
  • Batte AD, Honeycombe RWK. Strengthening of ferrite by vanadium carbide precipitation. Met Sci J. 1973;7(1):160–168.
  • Martin JW. Precipitation hardening. Oxford: Pergamon Press; 1968.
  • Gladman T. Precipitation hardening in metals. Met Sci J. 1999;15(1):30–36.
  • Niessen F. Crystalaligner: A computer program to align crystal directions in a scanning electron microscope by global optimisation. J Appl Crystallogr. 2020;53:282–293.
  • Niessen F, Nancarrow MJB. Computer-aided manufacturing and focused ion beam technology enable machining of complex micro- and nano-structures. Nanotechnology. 2019;30:435301.
  • Kresse G. Software vasp, Vienna, 1999; g. kresse, j. furthmüller. Phys Rev B. 1996;54(11):169.
  • Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59(3):1758.
  • Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 1996;54(11):11169.
  • Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr. 2011;44:1272–1276.
  • Brauer G, Schnell WD. Carbidnitride des Vanadiums. J Less Common Met. 1964;7(1):23–30.
  • Baker RG, Nutting J. The tempering of a Cr-Mo-V-W and a Mo-V steel in precipitation processes in steels. Special report No. 64. London: The Iron and Steel Institute; 1959. p. 1–22.
  • Sawada H, Ozaki T. Structure and energy of interface between iron and precipitate. Nippon Steel Tech Rept. 2013;102:9–14.
  • Porter DA, Easterling KE, Sherif M. Phase transformations in metals and alloys. Bosa Roca, USA: CRC Press LLC; 2009.
  • Mannan P, Casillas G, Pereloma EV. The effect of Nb solute and NbC precipitates on dynamic and metadynamic recrystallisation in Ni-30Fe-Nb-C model alloys. Mater Sci Eng A. 2017;700:116–131.
  • Wang J, Weyland M, Bikmukhametov I, et al. Transformation from cluster to nano-precipitate in microalloyed ferritic steel. Scr Mater. 2019;160:53–57.
  • Hirotsu Y, Nagakura S. Crystal structure and morphology of the carbide precipitated from martensitic high carbon steel during the first stage of tempering. Acta Metall. 1972;20(4):645–655.
  • Charleux M, Poole WJ, Militzer M, et al. Precipitation behavior and its effect on strengthening of an HSLA-Nb/Ti steel. Metall Mater Trans A. 2001;32(7):1635–1647.
  • Kim SA, Johnson WL. Elastic constants and internal friction of martensitic steel, ferritic-pearlitic steel, and alpha-iron. Mater Sci Eng A. 2007;452-453:633–639.
  • Yang Z-G, Enomoto M. Calculation of the interfacial energy of B1-type carbides and nitrides with austenite. Metall Mater Trans A. 2001;32A:267–274.
  • Hollox GE. Microstructure and mechanical behavior of carbides. Baltimore, Maryland: Research Institute for Advanced Studies; 1968. p. 1–59.
  • Hannink RHJ, Kohlstedt DL, Murray MJ. Slip system determination in cubic carbides by hardness anisotropy. Proc Royal Soc London A. 1972;326:409–420.
  • Wang J, Zhou Q, Shao S, et al. Strength and plasticity of nanolaminated materials. Mater Res Lett. 2017;5(1):1–19.
  • Li BQ, Wawner FE. Dislocation interaction with semicoherent precipitates (Ω phase) in Deformed Al-Cu-Mg-Ag alloy. Acta Mater. 1998;46(15):5483–5490.
  • Wang SJ, Liu G, Xie DY, et al. Plasticity of laser-processed nanoscale AlAl2Cu eutectic alloy. Acta Mater. 2018;156:52–63.
  • Zhang P, Bian J-J, Yang C, et al. Plate-like precipitate effects on plasticity of Al-Cu micro-pillar: {100}-interfacial slip. Materialia. 2019;7:100416.
  • Ardell AJ. Precipitation hardening. Metall Trans A. 1985;16(12):2131–2165.