1,791
Views
41
CrossRef citations to date
0
Altmetric
Original Reports

Imparities of shear avalanches dynamic evolution in a metallic glass

ORCID Icon, , , , & ORCID Icon
Pages 357-363 | Received 07 Jan 2020, Published online: 01 Jun 2020

References

  • Byrne CJ, Eldrup M. Materials science: bulk metallic glasses. Science. 2008;321(5888):502–503. doi: 10.1126/science.1158864
  • Wang WH, Dong C, Shek CH. Bulk metallic glasses. Mat Sci Eng R. 2004;44:45–89. doi: 10.1016/j.mser.2004.03.001
  • Tian L, Wang XL, Shan ZW. Mechanical behavior of micronanoscaled metallic glasses. Mater Res Lett. 2016;4:63–74. doi: 10.1080/21663831.2015.1124298
  • Bian XL, Wang G, Wang Q, et al. Cryogenic-temperature-induced structural transformation of a metallic glass. Mater Res Lett. 2017;5(4):284–291. doi: 10.1080/21663831.2016.1263687
  • Su Q, Price L, Shao L. Dose dependence of radiation damage in nano-structured amorphous SiOC/crystalline Fe composite. Mater Res Lett. 2016;4(1):48–54. doi: 10.1080/21663831.2015.1103796
  • Zhou Q, Du Y, Han WQ, et al. Identifying the origin of strain rate sensitivity in a high entropy bulk metallic glass. Scr Mater. 2019;164:121–125. doi: 10.1016/j.scriptamat.2019.02.002
  • Klaumünzer D, Lazarev A, Maaß R, et al. Probing shear-band initiation in metallic glasses. Phys Rev Lett. 2011;107(18):185502. doi: 10.1103/PhysRevLett.107.185502
  • Lewandowski JJ, Greer AL. Temperature rise at shear bands in metallic glasses. Nature Mater. 2006;5(1):15–18. doi: 10.1038/nmat1536
  • Ma E. Tuning order in disorder. Nature Mater. 2015;14(6):547–552. doi: 10.1038/nmat4300
  • Sun BA, Yu HB, Jiao W, et al. Plasticity of ductile metallic glasses: a self-organized critical state. Phys Rev Lett. 2010;105(3):035501. doi: 10.1103/PhysRevLett.105.035501
  • Ren JL, Chen C, Wang G, et al. Dynamics of serrated flow in a bulk metallic glass. AIP Adv. 2011;1(3):032158. doi: 10.1063/1.3643218
  • Sarmah R, Ananthakrishna G, Sun BA, et al. Hidden order in serrated flow of metallic glasses. Acta Mater. 2011;59(11):4482–4493. doi: 10.1016/j.actamat.2011.03.071
  • Bian XL, Wang G, Chan KC, et al. Shear avalanches in metallic glasses under nanoindentation: deformation units and rate dependent strain burst cut-off. Appl Phys Lett. 2013;103:101907. doi: 10.1063/1.4820782
  • Zhou Q, Du Y, Ren Y, et al. Investigation into nanoscratching mechanical performance of metallic glass multilayers with improved nano-tribological properties. J Alloys Compd. 2019;776:447–459. doi: 10.1016/j.jallcom.2018.10.270
  • Kim J, Oh HS, Kim J, et al. Utilization of high entropy alloy characteristics in Er-Gd-Y-Al-Co high entropy bulk metallic glass. Acta Mater. 2018;155:350–361. doi: 10.1016/j.actamat.2018.06.024
  • Ren JL, Chen C, Liu ZY, et al. Plastic dynamics transition between chaotic and self-organized critical states in a glassy metal via a multifractal intermediate. Phys Rev B. 2012;86(13):134303. doi: 10.1103/PhysRevB.86.134303
  • Lu Z, Yang XN, Sun BA, et al. Divergent strain acceleration effects in metallic glasses. Scr Mater. 2017;130:229–233. doi: 10.1016/j.scriptamat.2016.12.017
  • Takeuchi S, Edagawa K. Atomistic simulation and modeling of localized shear deformation in metallic glasses. Prog Mater Sci. 2011;56(6):785–816. doi: 10.1016/j.pmatsci.2011.01.007
  • Scudino S, Sopu D. Strain distribution across an individual shear band in real and simulated metallic glasses. Nano Lett. 2018;18:1221–1227. doi: 10.1021/acs.nanolett.7b04816
  • Derlet PM, Maaß R. Thermally-activated stress relaxation in a model amorphous solid and the formation of a system-spanning shear event. Acta Mater. 2018;143:205–213. doi: 10.1016/j.actamat.2017.10.020
  • Chen Y, Jiang MQ, Dai LH. Collective evolution dynamics of multiple shear bands in bulk metallic glasses. Int J Plast. 2013;50:18–36. doi: 10.1016/j.ijplas.2013.03.010
  • Ketov SV, Sun YH, Nachum S, et al. Rejuvenation of metallic glasses by non-affine thermal strain. Nature. 2015;524(7564):200–203. doi: 10.1038/nature14674
  • Gao YF, Bei HB. Strength statistics of single crystals and metallic glasses under small stressed volumes. Prog Mater Sci. 2016;82:118–150. doi: 10.1016/j.pmatsci.2016.05.002
  • Zhang P, Li SX, Zhang ZF. General relationship between strength and hardness. Mater Sci Eng A. 2011;529:62–73. doi: 10.1016/j.msea.2011.08.061
  • Qiao JW, Sun AC, Huang EW, et al. Tensile deformation micromechanisms for bulk metallic glass matrix composites: from work-hardening to softening. Acta Mater. 2011;59(10):4126–4137. doi: 10.1016/j.actamat.2011.03.036
  • Greer AL, Cheng YQ, Ma E. Shear bands in metallic glasses. Mat Sci Eng:R. 2013;74:71–132. doi: 10.1016/j.mser.2013.04.001
  • Fu Z, Macdonald BE, Li Z, et al. Engineering heterostructured grains to enhance strength in a single-phase high-entropy alloy with maintained ductility. Mater Res Lett. 2018;6(11):634–640. doi: 10.1080/21663831.2018.1526222
  • Packard CE, Schuh CA. Initiation of shear bands near a stress concentration in metallic glass. Acta Mater. 2007;55(16):5348–5358. doi: 10.1016/j.actamat.2007.05.054
  • Jiang MQ, Dai LH. On the origin of shear banding instability in metallic glasses. J Mech Phys Solids. 2009;57(8):1267–1292. doi: 10.1016/j.jmps.2009.04.008
  • Xie X, Lo YC, Tong Y, et al. Origin of serrated flow in bulk metallic glasses. J Mech Phys Solids. 2019;124:634–642. doi: 10.1016/j.jmps.2018.11.015