4,975
Views
29
CrossRef citations to date
0
Altmetric
Original Reports

A novel equiaxed eutectic high-entropy alloy with excellent mechanical properties at elevated temperatures

, ORCID Icon, , , &
Pages 373-382 | Received 22 Mar 2020, Published online: 01 Jun 2020

References

  • Cantor B, Chang ITH, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375:213–218. doi: 10.1016/j.msea.2003.10.257
  • Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6:99–303. doi: 10.1002/adem.200300567
  • Miracle DB. High-entropy alloys: a current evaluation of founding ideas and core effects and exploring “nonlinear alloys.” JOM. 2017;11:2130–2136. doi: 10.1007/s11837-017-2527-z
  • Tsai KY, Tsai MH, Yeh JW. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 2013;13:4887–4897. doi: 10.1016/j.actamat.2013.04.058
  • Yeh JW, Chang SY, Hong Y Der, et al. Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements. Mater Chem Phys. 2007;103:41–46. doi: 10.1016/j.matchemphys.2007.01.003
  • Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014;345:1153–1158. doi: 10.1126/science.1254581
  • Li Z, Pradeep KG, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature. 2016;534:227–230. doi: 10.1038/nature17981
  • Yang T, Zhao YL, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science. 2018;362:933–937. doi: 10.1126/science.aas8815
  • Lei Z, Liu X, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature. 2018;563:546–550. doi: 10.1038/s41586-018-0685-y
  • Ding Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature. 2019;574:223–227. doi: 10.1038/s41586-019-1617-1
  • Lu Y, Gao X, Jiang L, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 2017;124:143–150. doi: 10.1016/j.actamat.2016.11.016
  • Lu Y, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci Rep. 2014;4:6200. doi: 10.1038/srep06200
  • Ai C, He F, Guo M, et al. Alloy design, micromechanical and macromechanical properties of CoCrFeNiTax eutectic high entropy alloys. J Alloys Compd. 2018;735:2653–2662. doi: 10.1016/j.jallcom.2017.12.015
  • Huo W, Zhou H, Fang F, et al. Microstructure and properties of novel CoCrFeNiTax eutectic high-entropy alloys. J Alloys Compd. 2018;735:897–904. doi: 10.1016/j.jallcom.2017.11.075
  • Jiang H, Han K, Qiao D, et al. Effects of Ta addition on the microstructures and mechanical properties of CoCrFeNi high entropy alloy. Mater Chem Phys. 2018;210:43–48. doi: 10.1016/j.matchemphys.2017.05.056
  • Han L, Xu X, Wang L, et al. A eutectic high-entropy alloy with good high-temperature strength-plasticity balance. Mater Res Lett. 2019;7:460–466. doi: 10.1080/21663831.2019.1650130
  • He F, Wang Z, Cheng P, et al. Designing eutectic high entropy alloys of CoCrFeNiNbx. J Alloys Compd. 2016;656:284–289. doi: 10.1016/j.jallcom.2015.09.153
  • Zhao YL, Yang T, Tong Y, et al. Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy. Acta Mater. 2017;138:72–82. doi: 10.1016/j.actamat.2017.07.029
  • He JY, Wang H, Wu Y, et al. Precipitation behavior and its effects on tensile properties of FeCoNiCr high-entropy alloys. Intermetallics. 2016;79:41–52. doi: 10.1016/j.intermet.2016.09.005
  • Sui S, Tan H, Chen J, et al. The influence of Laves phases on the room temperature tensile properties of Inconel 718 fabricated by powder feeding laser additive manufacturing. Acta Mater. 2019;164:413–427. doi: 10.1016/j.actamat.2018.10.032
  • Sriharitha R, Murty BS, Kottad RS, Alloying, thermal stability and strengthening in spark plasma sintered AlxCoCrCuFeNi high entropy alloys. J Alloys Compd. 2014;583:419–426. doi: 10.1016/j.jallcom.2013.08.176
  • Praveen S, Basu J, Kashyap S, Kottad RS, Exceptional resistance to grain growth in nanocrystalline CoCrFeNi high entropy alloy at high homologous temperatures. J Alloys Compd. 2016;662:361–367. doi: 10.1016/j.jallcom.2015.12.020
  • Garlapati MM, Vaidya M, Karati A, Mishra S, Bhattacharya R, Murty BS, Influence of Al content on the thermal stability of nanocrystalline AlxCoCrFeNi high entropy alloys at low and intermediate temperatures. Adv Powder Technol. 2020. doi: 10.1016/j.apt.2020.02.032
  • Sathiyamoorthi P, Basu J, Kashyap S, Pradeep KG, Kottad RS, Thermal stability and grain boundary strengthening in ultrafine-grained CoCrFeNi high entropy alloy composite. Mater Des. 2017;134:426–433. doi: 10.1016/j.matdes.2017.08.053
  • Liu B, Wang J, Liu Y, et al. Microstructure and mechanical properties of equimolar FeCoCrNi high entropy alloy prepared via powder extrusion. Intermetallics.2016;75:25–30. doi: 10.1016/j.intermet.2016.05.006
  • Komura Y, Tokunaga K. Structural studies of stacking variants in Mg-base Friauf–laves phases. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem. 1980;36:1548–1554. doi: 10.1107/S0567740880006565
  • He X, Kong LT, Liu BX. Stability of the metastable phases in the Co-Ta system studied by ab initio and thermodynamic calculations together with ion-beam-mixing experiment. J Phys Soc Japan. 2005;74:2501–2505. doi: 10.1143/JPSJ.74.2501
  • Daoud HM, Manzoni AM, Wanderka N, et al. High-temperature tensile strength of Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy (high-entropy alloy). JOM. 2015;67:10. doi: 10.1007/s11837-015-1484-7
  • Kuznetsov A V., Shaysultanov DG, Stepanov ND, et al. Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions. Mater Sci Eng A. 2012;533:107–118. doi: 10.1016/j.msea.2011.11.045
  • Jiang L, Lu YP, Song M, et al. A promising CoFeNi2V0.5Mo0.2 high entropy alloy with exceptional ductility. Scr Mater. 2019;165:128–133. doi: 10.1016/j.scriptamat.2019.02.038
  • Kolluri M, Ten Pierick P, Bakker T. Characterization of high temperature tensile and creep-fatigue properties of alloy 800H for intermediate heat exchanger components of (V)HTRs. Nucl Eng Des. 2015;284:38–49. doi: 10.1016/j.nucengdes.2014.12.017
  • T.J. Zhou, H.S. Ding, X.P. Ma, W. Feng, H.B. Zhao, A.L. Li, Y. Meng, H.X. Zhang, Effect of precipitates on high-temperature tensile strength of a high W-content cast Ni-based superalloy, J Alloys Compd 2019;797;486–496. doi: 10.1016/j.jallcom.2019.05.085
  • Kaoumi D, Hrutkay K. Tensile deformation behavior and microstructure evolution of Ni-based superalloy 617. J Nucl Mater. 2014;454:265–273. doi: 10.1016/j.jnucmat.2014.08.003
  • Zhang L, Zhou Y, Jin X, et al. The microstructure and high-temperature properties of novel nano precipitation-hardened face centered cubic high-entropy superalloys. Scr Mater. 2018;146:226–230. doi: 10.1016/j.scriptamat.2017.12.001
  • Dong H, Yu L, Liu Y, et al. Effect of hafnium addition on the microstructure and tensile properties of aluminum added high-Cr ODS steels. J Alloys Compd. 2017;702:538–545. doi: 10.1016/j.jallcom.2017.01.298
  • Li M, Zu M, Yu Y, et al. Elevated temperature tensile behavior and microstructure evolution of liquid phase sintered 90W–7Ni–3Fe alloy. J Alloys Compd. 2019;802:528–534. doi: 10.1016/j.jallcom.2019.06.222
  • Wang HW, Qi JQ, Zou CM, et al. High-temperature tensile strengths of in situ synthesized TiC/Ti-alloy composites. Mater Sci Eng A. 2012;545:209–213. doi: 10.1016/j.msea.2012.03.037
  • Jackson KA, Hunt JD. Lamellar and rod eutectic growth. Dyn Curved Front. 1988;363–376. doi: 10.1016/B978-0-08-092523-3.50040-X
  • Ding ZY, He QF, Yang Y. Exploring the design of eutectic or near-eutectic multicomponent alloys: from binary to high entropy alloys. Sci China Technol Sci. 2018;61:159-167. doi: 10.1007/s11431-017-9051-6
  • Hayashi T, Sarosi PM, Schneibel JH, et al. Creep response and deformation processes in nanocluster-strengthened ferritic steels. Acta Mater. 2008;56:1407–1416. doi: 10.1016/j.actamat.2007.11.038
  • Huo W, Zhou H, Fang F, et al. Microstructure and mechanical properties of CoCrFeNiZrx eutectic high-entropy alloys. Mater Des. 2017;134:226–233. doi: 10.1016/j.matdes.2017.08.030
  • Nie J, Lu F, Huang Z, et al. Improving the high-temperature ductility of Al composites by tailoring the nanoparticle network. Materialia. 2020;9:100523. doi: 10.1016/j.mtla.2019.100523
  • Griffits AA. The phenomena of rupture and flow in solids. Masinovedenie. 1995;1:9–14.
  • Jin X, Liang Y, Bi J, et al. Enhanced strength and ductility of Al0.9CoCrNi2.1 eutectic high entropy alloy by thermomechanical processing. Materialia. 2020;10:100639. doi: 10.1016/j.mtla.2020.100639