21,971
Views
438
CrossRef citations to date
0
Altmetric
Perspective Paper

Heterostructured materials: superior properties from hetero-zone interaction

, , , , , ORCID Icon, , , , , ORCID Icon, & show all
Pages 1-31 | Received 20 Jun 2020, Published online: 27 Sep 2020

References

  • Wu XL, Zhu YT. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Lett. 2017;5:527–532.
  • Zhu YT, Wu XL. Perspective on heterogeneous deformation induced (HDI) hardening and back stress. Mater Res Lett. 2019;7:393–398.
  • Wu XL, Yang MX, Yuan FP, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc Natl Acad Sci USA. 2015;112:14501–14505.
  • Embury DJ, Bouaziz O. Steel-based composites: diving forces and classifications. Annu Rev Mater Res. 2010;40:213–241.
  • Li HL, Li XH, Guo DF, et al. Three-dimensional self-assembly of core/shell-like nanostructures for high-performance nanocomposite permanent magnets. Nano Lett. 2016;16:5631–5638.
  • Huang GW, Li XH, Lou L, et al. Engineering bulk, alyered, multicomponent nanostructures with high energy density. Small. 2018;14:1800619.
  • Nan CW, Jian QX. Obtaining ultimate functionalities in nanocomposites: design, control, and fabrication. MRS Bull. 2015;40:719–723.
  • Chen AP, Su Q, Han HK, et al. Metal oxide nanocomposites: a perspective from strain, defect, and interface. Adv Mater. 2019;31:1803241.
  • Roters F, Eisenlohr P, Hantcherli L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater. 2010;58:1152–1211.
  • Li L, Anderson PM, Lee MG, et al. The stress-strain response of nanocrystalline metals: a quantized crystal plasticity approach. Acta Mater. 2009;57:812–822.
  • Li L, Van Petegem S, Van Swygenhoven H, et al. Slip-induced intergranular stress redistribution in nanocrystalline Ni. Acta Mater. 2012;60:7001–7010.
  • Evans AG, Hutchinson JW. A critical assessment of theories of strain gradient plasticity. Acta Mater. 2009;57:1675–1688.
  • Fleck NA, Muller GM, Ashby MF, et al. Strain gradient plasticity: theory and experiment. Acta Metall Mater. 1994;42:475–487.
  • Gao H, Huang Y, Nix WD, et al. Mechanism-based strain gradient plasticity – I. Theory. J Mech Phys Solids. 1999;47:1239–1263.
  • Yang MX, Pan Y, Yuan FP, et al. Back stress strengthening and strain hardening in gradient structure. Mater Res Lett. 2016;4:145–151.
  • Ma XL, Huang CX, Moering J, et al. Mechanical properties in copper/bronze laminates: role of interfaces. Acta Mat. 2016;116:43–52.
  • Huang CX, Wang YF, Ma XL, et al. Interface affected zone for optimal strength and ductility in heterogeneous laminate. Mater Today. 2018;17:713–719.
  • Zhou H, Huang CX, Sha XC, et al. In-situ observation of dislocation dynamics near heterostructured interfaces. Mater Res Lett. 2019;7:376–382.
  • Gao HJ, Huang YG. Geometrically necessary dislocation and size-dependent plasticity. Scripta Mater. 2003;48:113–118.
  • Moan GD, Embury JD. Study of the bauschinger effect in Al-Cu alloys. Acta Metall. 1979;27:903–914.
  • Wang YF, Huang CX, Fang XT, et al. Hetero-deformation induced (HDI) hardening does not increase linearly with strain gradient. Scr Mater. 2020;174:19–23.
  • Yuan FP, Yan DS, Sun JD, et al. Ductility by shear band delocalization in the nano-layer of gradient structure. Mater Res Lett. 2019;7:12–17.
  • Wang YF, Huang CX, He Q, et al. Heterostructure induced dispersive shear bands in heterostructured Cu. Scr Mater. 2019;170:76–80.
  • Bay B, Hansen N, Hughes DA, et al. Overview No-96 – evolution of Fcc deformation structures in polyslip. Acta Metall Mater. 1992;40:205–219.
  • Huang JY, Zhu YT, Jiang H, et al. Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening. Acta Mater. 2001;49:1497–1505.
  • Lu K. Making strong nanomaterials ductile with gradients. Science. 2014;345:1455–1456.
  • Wu XL, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure. Proc Natl Acad Sci USA. 2014;111:7197–7201.
  • Wu XL, JIang P, Chen L, et al. Synergetic strengthening by gradient structure. Mater Res Lett. 2014;2:185–191.
  • Fang TH, Li WL, Tao NR, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science. 2011;331:1587–1590.
  • Chen AY, Liu JB, Wang HT, et al. Gradient twinned 304 stainless steels for high strength and high ductility. Mater Sci Eng A. 2016;667:179–188.
  • Wei YJ, Li YQ, Zhu LC, et al. Evading the strength- ductility trade-off dilemma in steel through gradient hierarchical nanotwins. Nature Comm. 2014;5:1–8.
  • Beyerlein IJ, Mayeur JR, Zheng SJ, et al. Emergence of stable interfaces under extreme plastic deformation. Proc Natl Acad Sci USA. 2014;111:4386–4390.
  • Nix WD. Mechanical-Properties of thin-films. Metall Trans a-Phys Metall Mater Sci. 1989;20:2217–2245.
  • Barnett SA, Shinn M. Plastic and elastic properties of compositionally modulated thin-films. Annu Rev Mater Sci. 1994;24:481–511.
  • Anderson PM, Foecke T, Hazzledine PM. Dislocation-based deformation mechanisms in metallic nanolaminates. MRS Bull. 1999;24:27–33.
  • Schwaiger R, Kraft O. High cycle fatigue of thin silver films investigated by dynamic microbeam deflection. Scr Mater. 1999;41:823–829.
  • Wang YC, Misra A, Hoagland RG. Fatigue properties of nanoscale Cu/Nb multilayers. Scripta Mater. 2006;54:1593–1598.
  • Misra A. Mechanical behavior of metallic nanolaminates. Nanostructure control of materials. by’ Hannink RH and Hill AJ. Cambridge: Woodhead Publishing Co.; 2006. p. 146–176.
  • Carpenter JS, Misra A, Uchic MD, et al. Strain rate sensitivity and activation volume of Cu/Ni metallic multilayer thin films measured via micropillar compression. Appl Phys Lett. 2012;101.
  • Carpenter JS, Misra A, Anderson PM. Achieving maximum hardness in semi-coherent multilayer thin films with unequal layer thickness. Acta Mater. 2012;60:2625–2636.
  • Carpenter JS, Vogel SC, LeDonne JE, et al. Bulk texture evolution of Cu-Nb nanolamellar composites during accumulative roll bonding. Acta Mater. 2012;60:1576–1586.
  • Wang J, Kang K, Zhang RF, et al. Structure and property of interfaces in ARB Cu/Nb laminated composites. JOM. 2012;64:1208–1217.
  • Gram MD, Carpenter JS, Payzant EA, et al. X-Ray diffraction studies of forward and reverse plastic flow in nanoscale layers during thermal cycling. Mater Res Lett. 2013;1:233–243.
  • Carpenter JS, Zheng SJ, Zhang RF, et al. Thermal stability of Cu-Nb nanolamellar composites fabricated via accumulative roll bonding. Philos Mag. 2013;93:718–735.
  • Zheng SJ, Beyerlein IJ, Carpenter JS, et al. High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces. Nat Commun. 2013;4:1696.
  • Calcagnotto M, Adachi Y, Ponge D, et al. Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging. Acta Mater. 2011;59:658–670.
  • Li ZM, Pradeep KG, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature. 2016;534:227 -+.
  • Park K, Nishiyama M, Nakada N, et al. Effect of the martensite distribution on the strain hardening and ductile fracture behaviors in dual-phase steel. Mater Sci Eng A. 2014;604:135–141.
  • Sawangrat C, Kato S, Orlov D, et al. Harmonic-structured copper: performance and proof of fabrication concept based on severe plastic deformation of powders. J Mater Sci. 2014;49:6579–6585.
  • Zhang Z, Vajpai SK, Orlov D, et al. Improvement of mechanical properties in SUS304L steel through the control of bimodal microstructure characteristics. Mater Sci Eng A. 2014;598:106–113.
  • Vajpai SK, Ota M, Watanabe T, et al. The development of high performance Ti-6Al-4V alloy via a unique microstructural design with bimodal grain size distribution. Metall Mater Trans A. 2015;46:903–914.
  • Wang YM, Chen MW, Zhou FH, et al. High tensile ductility in a nanostructured metal. Nature. 2002;419:912–915.
  • Han BQ, Huang JY, Zhu YT, et al. Strain rate dependence of properties of cryomilled bimodal 5083 Al alloys. Acta Mater. 2006;54:3015–3024.
  • Han BQ, Lee Z, Witkin D, et al. Deformation behavior of bimodal nanostructured 5083 Al alloys. Metall Mater Trans A. 2005;36a:957–965.
  • Zhao YH, Topping T, Bingert JF, et al. High tensile ductility and strength in bulk nanostructured nickel. Adv Mater. 2008;20:3028–3033.
  • Ashby MF. Deformation of plastically Non-homogeneous materials. Philos Mag. 1970;21:399 -&.
  • Jia D, Wang YM, Ramesh KT, et al. Deformation behavior and plastic instabilities of ultrafine-grained titanium. Appl Phys Lett. 2001;79:611–613.
  • Valiev RZ, Estrin Y, Horita Z, et al. Fundamentals of superior properties in bulk NanoSPD materials. Mater Res Lett. 2016;4:1–21.
  • Ovid’ko IA, Valiev RZ, Zhu YT. Review on superior strength and enhanced ductility of metallic nanomaterials. Prog Mater Sci. 2018;94:462–540.
  • Li JS, Cao Y, Gao B, et al. Superior strength and ductility of 316 L stainless steel with heterogeneous lamella structure. J Mater Sci. 2018;53:10442–10456.
  • Jo YH, Jung S, Choi WM, et al. Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy. Nat Commun. 2017;8:109–113.
  • Li ZK, Fang XT, Wang YF, et al. Tuning heterostructures with powder metallurgy for high synergistic strengthening and hetero-deformation induced hardening. Mater Sci Eng A. 2020;777:139074.
  • Zhu LL, Ruan HH, Chen AY, et al. Microstructures-based constitutive analysis for mechanical properties of gradient-nanostructured 304 stainless steels. Acta Mater. 2017;128:375–390.
  • Kou HN, Lu J, Li Y. High-Strength and high-ductility nanostructured and amorphous metallic materials. Adv Mater. 2014;26:5518–5524.
  • Cheng Z, Zhou HF, Lu QH, et al. Extra strengthening and work hardening in gradient nanotwinned metals. Science. 2018;362:559 -+.
  • Roumina R, Embury JD, Bouaziz O, et al. Mechanical behavior of a compositionally graded 300 M steel. Mater Sci Eng A. 2013;578:140–149.
  • Guo N, Zhang ZM, Dong QS, et al. Strengthening and toughening austenitic steel by introducing gradient martensite via cyclic forward/reverse torsion. Mater Des. 2018;143:150–159.
  • Lin Y, Pan J, Zhou HF, et al. Mechanical properties and optimal grain size distribution profile of gradient grained nickel. Acta Mater. 2018;153:279–289.
  • Cao RQ, Yu Q, Pan J, et al. On the exceptional damage-tolerance of gradient metallic materials. Mater Today. 2020;32:94–107.
  • Yang XC, Ma XL, Moering J, et al. Influence of gradient structure volume fraction on the mechanical properties of pure copper. Mater Sci Eng A. 2015;645:280–285.
  • Wu XL, Yang MX, Yuan FP, et al. Combining gradient structure and TRIP effect to produce austenite steel with high strength and ductility. Acta Mater. 2016;112:337–346.
  • Kang JY, Kim JG, Park HW, et al. Multiscale architectured materials with composition and grain size gradients manufactured using high-pressure torsion. Sci Rep. 2016;6:26590.
  • Singh A, Tang L, Dao M, et al. Fracture toughness and fatigue crack growth characteristics of nanotwinned copper. Acta Mater. 2011;59:2437–2446.
  • Pan QS, Zhou HF, Lu QH, et al. History-independent cyclic response of nanotwinned metals. Nature. 2017;551:214 -+.
  • Yang MX, Li RG, Jiang P, et al. Residual stress provides significant strengthening and ductility in gradient structured materials. Mater Res Lett. 2019;7:433–438. in review.
  • Moon JH, Baek SM, Lee SG, et al. Effects of residual stress on the mechanical properties of copper processed using ultrasonic-nanocrystalline surface modification. Mater Res Lett. 2019;7:97–102.
  • Lu K, Lu J. Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach. J Mater Sci Technol. 1999;15:193–197.
  • Lu K, Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater Sci Eng A. 2004;375–377:38–45.
  • Tong WP, Tao NR, Wang ZB, et al. Nitriding iron at lower temperatures. Science. 2003;299:686–688.
  • Lin YM, Lu J, Wang LP, et al. Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitrided AISI 321 stainless steel. Acta Mater. 2006;54:5599–5605.
  • Lu J, Chan HL, Chen AY, et al. Mechanics of high strength and high ductility materials. 11th Inter Conf Mech Behav Mat (Icm11). 2011;10:2202–2207.
  • Chen L, Wu XL. Mechanical property of duplex stainless steel with nanostructured layer by surface mechanical attrition treatment. Nanomater Plast Defor. 2011;682:123–130.
  • Ye C, Telang A, Gill AS, et al. Gradient nanostructure and residual stresses induced by ultrasonic nano-crystal surface modification in 304 austenitic stainless steel for high strength and high ductility. Mater Sci Eng a-Struct Mater Prop Microstruct Process. 2014;613:274–288.
  • Hughes DA, Hansen N. Exploring the limit of dislocation based plasticity in nanostructured metals. Phys Rev Lett. 2014;112:135504.
  • Wang X, Li YS, Zhang Q, et al. Gradient structured copper by rotationally accelerated shot peening. J Mater Sci Technol. 2017;33:758–761.
  • Umemoto M, Todaka Y, Tsuchiya K. Formation of nanocrystalline structure in steels by air blast shot peening. Mater Trans. 2003;44:1488–1493.
  • Todaka Y, Umemoto M, Tanaka S, et al. Formation of nanocrystalline structure at the surface of drill hole in steel. Mater Trans. 2004;45:2209–2213.
  • Todaka Y, Umemoto M, Tsuchiya K. Comparison of nanocrystalline surface layer in steels formed by air blast and ultrasonic shot peening. Mater Trans. 2004;45:376–379.
  • Todaka Y, Umemoto M, Watanabe Y, et al. Formation of nanocrystalline structure in steels by air blast shot peening and particle impact processing, Design Process Prop Adv Eng Mater. Pts; 1, and 2 2004;449–452:1149–1152.
  • Umemoto M, Todaka K, Tsuchiya K. Formation of nanocrystalline structure in carbon steels by ball drop and particle impact techniques. Mater Sci Eng a-Struct Mater Prop Microstruct Process. 2004;375:899–904.
  • Todaka Y, Umemoto M, Li J, et al. Nanocrystallization of carbon steels by shot peening and drilling. Rev Adv Mater Sci. 2005;10:409–416.
  • Umemoto M, Todaka Y, Watanabe Y, et al. Comparison of nanocrystallization in steels by ball milling, shot peening and drilling, metastable. Mechan Alloy Nanocrystall Mater. 2005;24–25:571–576.
  • Todaka Y, Umemoto M, Watanabe Y, et al. Formation of nanocrystalline structure by shot peening. Nanomater Severe Plastic Defor. 2006;503–504:669–674.
  • Umemoto M, Todaka Y, Li J, et al. Nanocrystalline structure in steels produced by various severe plastic deformation processes. Nanomater Severe Plastic Defor. 2006;503–504:11–18.
  • Umemoto M, Todaka Y, Li J, et al. Role of strain gradient and dynamic transformation on the formation of nanocrystalline structure produced by severe plastic deformation. Thermec. 2006, Pts 1–5 2007;539–543: 2787 -+.
  • Liu JL, Umemoto M, Todaka Y, et al. Formation of a nanocrystalline surface layer on steels by air blast shot peening. J Mater Sci. 2007;42:7716–7720.
  • Li JG, Umemoto M, Todaka Y, et al. Role of strain gradient on the formation of nanocrystalline structure produced by severe plastic deformation. J Alloys Compd. 2007;434:290–293.
  • Todaka Y, Umemoto M, Watanabe Y, et al. Formation of surface nanocrystalline structure in steels by shot peening and role of strain gradient on grain refinement by deformation. ISIJ Int. 2007;47:157–162.
  • He Y, Lee HS, Yang CW, et al. Microstructural evolution of a nanostructure of shot peened 304 stainless steel upon heat treatment. Sci Adv Mater. 2017;9:1942–1946.
  • Li JS, Gao WD, Cao Y, et al. Microstructures and mechanical properties of a gradient nanostructured 316L stainless steel processed by rotationally accelerated shot peening. Adv Eng Mater. 2018;20:1800402.
  • Todaka Y, Umemoto M, Li JG, et al. Nanocrystallization of drill hole surface by high speed drilling, metastable. Mechan Alloy Nanocrystall Mater. 2005;24–25:601–604.
  • Li JG, Umemoto M, Todaka Y, et al. Nanocrystalline structure formation in carbon steel introduced by high speed drilling. Mater Sci Eng a-Struct Mater Prop Microstruct Process. 2006;435:383–388.
  • Li JG, Umemoto M, Todaka Y, et al. A microstructural investigation of the surface of a drilled hole in carbon steels. Acta Mater. 2007;55:1397–1406.
  • Sato M, Tsuji N, Minamino Y, et al. Formation of nanocrystalline surface layers in various metallic materials by near surface severe plastic deformation. Sci Technol Adv Mater. 2004;5:145–152.
  • Zhu L, Fan XM. Microstructure and performance of surface nanostructure 316L stainless steel induced by wire-brushing deformation. Nanomater Plastic Defor. 2011;682:115–119.
  • Feng XY, Zhang FC, Yang ZN, et al. Wear behaviour of nanocrystallised hadfield steel. Wear. 2013;305:299–304.
  • Zhao XH, Zhao B, Liu Y, et al. Research on friction and wear behavior of gradient nano-structured 40Cr steel induced by high frequency impacting and rolling. Eng Fail Anal. 2018;83:167–177.
  • Zhao XH, Nie DW, Xu DS, et al. Effect of gradient nanostructures on tribological properties of 316 L stainless steel with high energy ion implantation tungsten carbide. Tribol Trans. 2019;62:189–197.
  • Lei YB, Wang ZB, Xu JL, et al. Simultaneous enhancement of stress- and strain-controlled fatigue properties in 316L stainless steel with gradient nanostructure. Acta Mater. 2019;168:133–142.
  • Zhao XH, Zhao YQ, Xu DS, et al. Effect of gradient nanostructure on plasma sulfonitrocarburizing of 42MnCr52 steel. Tribol Trans. 2020;63:133–143.
  • Zhang HW, Zhao YM, Wang YH, et al. Fabrication of nanostructure in inner-surface of AISI 304 stainless steel pipe with surface plastic deformation. J Mater Sci Technol. 2018;34:2125–2130.
  • Hughes DA, Hansen N. Microstructure and strength of nickel at large strains. Acta Mater. 2000;48:2985–3004.
  • Hughes DA, Hansen N. Graded nanostructures produced by sliding and exhibiting universal behavior. Phys Rev Lett. 2001;87:135503.
  • Hansen N. New discoveries in deformed metals. Metall Mater Trans a-Phys Metall Mater Sci. 2001;32:2917–2935.
  • Hughes DA, Hansen N. Deformation structures developing on fine scales. Philos Mag. 2003;83:3871–3893.
  • Hughes DA, Hansen N. Exploring the limit of dislocation based plasticity in nanostructured metals. Phys Rev Lett. 2014;112:135504.
  • Tsuji N, Gholizadeh R, Ueji R, et al. Formation mechanism of ultrafine grained microstructures: various possibilities for fabricating bulk nanostructured metals and alloys. Mater Trans. 2019;60:1518–1532.
  • Moering J, Ma XL, Chen GZ, et al. The role of shear strain on texture and microstructural gradients in low carbon steel processed by surface mechanical attrition treatment. Scripta Mater. 2015;108:100–103.
  • Chen WY, Tong WP, He CS, et al. Texture evolution in nanocrystalline Fe induced by surface mechanical attrition treatment. Mater Sci Forum. 2012;706–709:2663–2667.
  • Blonde R, Chan HL, Allain-Bonasso N, et al. Evolution of texture and microstructure in pulsed electro-deposited Cu treated by surface mechanical attrition treatment (SMAT). J Alloys Compd. 2010;504:S410–S413.
  • Wang ZY, Rifat M, Saldana C, et al. Quantifying the spread in crystallographic textures due to transients in strain paths in shot-peening. Materialia. 2018;2:231–249.
  • Basu S, Wang ZY, Saldana C. Deformation heterogeneity and texture in surface severe plastic deformation of copper. Proc Royal Soc A. 2016;472:20150486.
  • Mara NA, Beyerlein IJ. Interface-dominant multilayers fabricated by severe plastic deformation: stability under extreme conditions. Curr Opin Solid State Mater Sci. 2015;19:265–276.
  • Wang J, Misra A. An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr Opin Solid State Mater Sci. 2011;15:20–28.
  • Beyerlein IJ, Demkowicz MJ, Misra A, et al. Defect-interface interactions. Prog Mater Sci. 2015;74:125–210.
  • Nizolek T, Beyerlein IJ, Mara NA, et al. Tensile behavior and flow stress anisotropy of accumulative roll bonded Cu-Nb nanolaminates. Appl Phys Lett. 2016;108:051903.
  • Beyerlein IJ, Wang J. Interface-driven mechanisms in cubic/noncubic nanolaminates at different scales. MRS Bull. 2019;44:31–39.
  • Pathak S, Velisavljevic N, Baldwin JK, et al. Strong, ductile, and thermally stable bcc-Mg nanolaminates. Sci Rep. 2017;7.
  • Subedi S, Beyerlein IJ, Lesar R, et al. Strengt of nanoscale metallic multilayers. Scr Mater. 2018;145:132–136.
  • Snel J, Monclus MA, Castillo-Rodriguez M, et al. Deformation mechanism map of Cu/Nb nanoscale metallic multilayers as a function of temperature and layer thickness. Jom. 2017;69:2214–2226.
  • Monclus MA, Zheng SJ, Mayeur JR, et al. Optimum high temperature strength of two-dimensional nanocomposites. APL Mater. 2013;1.
  • Yang WF, Beyerlein IJ, Jin QQ, et al. Strength and ductility of bulk Cu/Nb nanolaminates exposed to extremely high temperatures. Scr Mater. 2019;166:73–77.
  • Avallone JT, Nizolek TJ, Bales BB, et al. Creep resistance of bulk copper-niobium composites: an inverse effect of multilayer length scale. Acta Mater. 2019;176:189–198.
  • Han WZ, Cerreta EK, Mara NA, et al. Deformation and failure of shocked bulk Cu-Nb nanolaminates. Acta Mater. 2014;63:150–161.
  • Han WZ, Demkowicz MJ, Mara NA, et al. Design of radiation tolerant materials via interface engineering. Adv Mater. 2013;25:6975–6979.
  • Wang M, Beyerlein IJ, Zhang J, et al. Bi-metal interface-mediated defects distribution in neon ion bombarded Cu/Ag nanocomposites. Scr Mater. 2019;171:1–5.
  • Chen TJ, Yuan R, Beyerlein IJ, et al. Predicting the size scaling in strength of nanolayered materials by a discrete slip crystal plasticity model. Int J Plast. 2020;124:247–260.
  • Yu-Zhang K, Embury JD, Han K, et al. Transmission electron microscopy investigation of the atomic structure of interfaces in nanoscale Cu-Nb multilayers. Philos Mag. 2008;88:2559–2567.
  • Wang J, Zhang RF, Zhou CZ, et al. Characterizing interface dislocations by atomically informed Frank-Bilby theory. J Mater Res. 2013;28:1646–1657.
  • Frutos E, Callisti M, Karlik M, et al. Length-scale-dependent mechanical behaviour of Zr/Nb multilayers as a function of individual layer thickness. Mater Sci Eng a-Struct Mater Prop Microstruct Process. 2015;632:137–146.
  • Savage DJ, Beyerlein IJ, Mara NA, et al. Microstructure and texture evolution in Mg/Nb layered materials made by accumulative roll bonding. Int J Plasticity. 2020;125:1–26.
  • Zeng LF, Gao R, Fang QF, et al. High strength and thermal stability of bulk Cu/Ta nanolamellar multilayers fabricated by cross accumulative roll bonding. Acta Mater. 2016;110:341–351.
  • Yasuda A, Kikuchi S. Effect of annealing on the strength of Ag/Fe and Ag/Ni super-laminates produced by foil metallurgy. Mater Sci Eng a-Struct Mater Prop Microstruct Process. 2004;387:783–788.
  • Carpenter JS, Nizolek T, McCabe RJ, et al. Bulk texture evolution of nanolamellar Zr-Nb composites processed via accumulative roll bonding. Acta Mater. 2015;92:97–108.
  • Leu B, Savage DJ, Wang JX, et al. Processing of dilute Mg-Zn-Mn-Ca alloy/Nb multilayers by accumulative roll bonding. Adv Eng Mater. 2020;22.
  • Ardeljan M, Savage DJ, Kumar A, et al. The plasticity of highly oriented nano-layered Zr/Nb composites. Acta Mater. 2016;115:189–203.
  • Ardeljan M, Knezevic M, Jain M, et al. Room temperature deformation mechanisms of Mg/Nb nanolayered composites. J Mater Res. 2018;33:1311–1332.
  • Kang K, Wang J, Zheng SJ, et al. Minimum energy structures of faceted, incoherent interfaces. J Appl Phys. 2012;112.
  • Beyerlein IJ, Wang J, Zhang RF. Mapping dislocation nucleation behavior from bimetal interfaces. Acta Mater. 2013;61:7488–7499.
  • Martinez E, Caro A, Beyerlein IJ. Atomistic modeling of defect-induced plasticity in CuNb nanocomposites. Physical Review B. 2014;90.
  • Wang M, Beyerlein IJ, Zhang J, et al. Defect-interface interactions in irradiated Cu/Ag nanocomposites. Acta Mater. 2018;160:211–223.
  • Martinez E, Uberuaga BP, Beyerlein IJ. Interaction of small mobile stacking fault tetrahedra with free surfaces, dislocations, and interfaces in Cu and Cu-Nb. Phys Rev B. 2016;93.
  • Kong XF, Beyerlein IJ, Liu ZR, et al. Stronger and more failure-resistant with three-dimensional serrated bimetal interfaces. Acta Mater. 2019;166:231–245.
  • Misra A, Hoagland RG. Effects of elevated temperature annealing on the structure and hardness of copper/niobium nanolayered films. J Mater Res. 2005;20:2046–2054.
  • Huang SX, Beyerlein IJ, Zhou CZ. Nanograin size effects on the strength of biphase nanolayered composites. Sci Rep. 2017;7.
  • Zheng SJ, Carpenter JS, McCabe RJ, et al. Engineering interface structures and thermal stabilities via SPD processing in bulk nanostructured metals. Sci Rep. 2014;4.
  • Sekiguchi T, Ono K, Fujiwara H, et al. New microstructure design for commercially pure titanium with outstanding mechanical properties by mechanical milling and hot roll sintering. Mater Trans. 2010;51:39–45.
  • Nagata M, Horikawa N, Kawabata M, et al. Effects of microstructure on mechanical properties of harmonic structure designed pure Ni. Mater Trans. 2019;60:1914–1920.
  • Vajpai SK, Ota M, Zhang Z, et al. Three-dimensionally gradient harmonic structure design: an integrated approach for high performance structural materials. Mater Res Lett. 2016;4:191–197.
  • Vajpai SK, Sawangrat C, Yamaguchi O, et al. Effect of bimodal harmonic structure design on the deformation behaviour and mechanical properties of Co-Cr-Mo alloy. Mater Sci Eng C-Mater Biolog Appl. 2016;58:1008–1015.
  • Park HK, Ameyama K, Yoo J, et al. Additional hardening in harmonic structured materials by strain partitioning and back stress. Mater Res Lett. 2018;6:261–267.
  • Zhang Z, Orlov D, Vajpai SK, et al. Importance of bimodal structure topology in the control of mechanical properties of a stainless steel. Adv Eng Mater. 2015;17:791–795.
  • Sawangrat C, Yamaguchi O, Vajpai SK, et al. Application of harmonic structure design to biomedical co-Cr-Mo alloy for improved mechanical properties. Mater Trans. 2014;55:99–105.
  • Vajpai SK, Ota M, Watanabe T, et al. The development of high performance Ti-6Al-4V alloy via a unique microstructural design with bimodal grain size distribution. Metall Mater Trans A. 2015;46A:903–914.
  • Tasan CC, Diehl M, Yan D, et al. An overview of dual-phase steels: advances in microstructure-oriented processing and micromechanically guided design. Annu Rev Mater Res. 2015;45:391–431.
  • Kim JG, Baek SM, Cho WT, et al. On the rule-of-mixtures of the hardening parameters in TWIP-cored three-layer steel sheet. Met Mater Int. 2017;23:459–464.
  • Sathiyamoorthi P, Asghari-Rad P, Park JM, et al. Achieving high strength and high ductility in Al0.3CoCrNi medium-entropy alloy through multi-phase hierarchical microstructure. Materialia. 2019;8:100442.
  • Park JM, Moon J, Bae JW, et al. Role of BCC phase on tensile behavior of dual-phase Al0.5CoCrFeMnNi high-entropy alloy at cryogenic temperature. Mater Sci Eng a-Struct Mater Prop Microstruct Process. 2019;746:443–447.
  • Yoon JI, Jung J, Lee HH, et al. Relationships between stretch-flangeability and microstructure-mechanical properties in ultra-high-strength dual-phase steels. Met Mater Int. 2019;25:1161–1169.
  • Tellkamp VL, Melmed A, Lavernia EJ. Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy. Metall Mater Trans A. 2001;32:2335–2343.
  • Witkin DB, Lavernia EJ. Synthesis and mechanical behavior of nanostructured materials via cryomilling. Prog Mater Sci. 2006;51:1–60.
  • Ye J, Han BQ, Lee Z, et al. A tri-modal aluminum based composite with super-highstrength. Scr Mater. 2005;53:481–486.
  • Lavernia EJ, Han BQ, Schoenung JM. Cryomilled nanostructured materials: processing and properties. Mater Sci Eng a-Struct Mater Prop Microstruct Process. 2008;493:207–214.
  • Li Y, Zhao YH, Ortalan V, et al. Investigation of aluminum-based nanocomposites with ultra-high strength. Mater Sci Eng A. 2009;527:305–316.
  • Jiang L, Ma KK, Yang H, et al. The microstructural design of trimodal aluminum composites. JOM. 2014;66:898–908.
  • Cantwell PR, Tang M, Dillon SJ, et al. Grain boundary complexions. Acta Mater. 2014;62:1–48.
  • Yang H, Jiang L, Balog M, et al. Reinforcement size dependence of load bearing capacity in ultrafine-grained metal matrix composites. Metall Mater Trans a-Phys Metall Mater Sci. 2017;48a:4385–4392.
  • Khalajhedayati A, Pan ZL, Rupert TJ. Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility. Nat Commun. 2016;7:10802.
  • Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat Rev Mater. 2016;1.
  • Chookajorn T, Murdoch HA, Schuh CA. Design of stable nanocrystalline alloys. Science. 2012;337:951–954.
  • Grosdidier T, Ji G, Launois S. Processing dense hetero-nanostructured metallic materials by spark plasma sintering. Scr Mater. 2007;57:525–528.
  • Lonardelli I, Bortolotti M, van Beek W, et al. Powder metallurgical nanostructured medium carbon bainitic steel: kinetics, structure, and in situ thermal stability studies. Mater Sci Eng a-Struct Mater Prop Microstruct Process. 2012;555:139–147.
  • Ji G, Bernard F, Launois S, et al. Processing conditions, microstructure and mechanical properties of hetero-nanostructured ODS FeAl alloys produced by spark plasma sintering. Mater Sci Eng a-Struct Mater Prop Microstruct Process. 2013;559:566–573.
  • Long QY, Lu JX, Fang TH. Microstructure and mechanical properties of AISI 316L steel with an inverse gradient nanostructure fabricated by electro-magnetic induction heating. Mater Sci Eng a-Struct Mater Prop Microstruct Process. 2019;751:42–50.
  • Kitahara H, Ueji R, Ueda M, et al. Crystallographic analysis of plate martensite in Fe–28.5 at.% Ni by FE-SEM/EBSD. Mater Charact. 2005;54:378–386.
  • Kitahara H, Ueji R, Tsuji N, et al. Crystallographic features of lath martensite in low-carbon steel. Acta Mater. 2006;54:1279–1288.
  • Bhadeshia HKDH. Nanostructured bainite. Proc Royal Soc A. 2010;466:3–18.
  • Bhadeshia HKDH. The first bulk nanostructured metal. Sci Technol Adv Mater. 2013;14:014202.
  • Demeri MY. Advanced high-strength steels: science, technology, and applications. Materials Park (OH, USA): ASM International; 2013.
  • Park NH, Tsuji N. Unpublished work, 2020.
  • Liu ZQ, Meyers MA, Zhang ZF, et al. Functional gradients and heterogeneities in biological materials: design principles, functions, and bioinspired applications. Prog Mater Sci. 2017;88:467–498.
  • Lin Y, Yu Q, Pan J, et al. On the impact toughness of gradient-structured metals. Acta Mater. 2020;193:125–137. in press.
  • Smith DL, Hoffman DW. Thin-film deposition: principles and practice. Phys Today. 1996;49:60.
  • Jankowski AF. Metallic multilayers at the nanoscale. Nanostruct Mater. 1995;6:179–190.
  • Ohring M. Materials science of thin films. 2nd ed. San Diego: Academic Press; 2002.
  • Seshan K. Handbook of thin film deposition. 3rd ed. Norwich (NY): William Andrew; 2012.
  • Emmerson CM, Shen TH, Evans SD, et al. A combined in situ optical reflectance-electron diffraction study of Co/Cu and Co/Au multilayers grown by molecular beam epitaxy. Appl Phys Lett. 1996;68:3740–3742.
  • Westerwaal RJ, Slaman M, Broedersz CP, et al. Optical, structural, and electrical properties of Mg2NiH4 thin films in situ grown by activated reactive evaporation. J Appl Phys. 2006;100.
  • Ross CA. Electrodeposited multilayer thin-films. Annu Rev Mater Sci. 1994;24:159–188.
  • Bakonyi I, Peter L. Electrodeposited multilayer films with giant magnetoresistance (GMR): progress and problems. Prog Mater Sci. 2010;55:107–245.
  • Yasuna K, Terauchi M, Otsuki A, et al. Bulk metallic multilayers produced by repeated press-rolling and their perpendicular magnetoresistance. J Appl Phys. 1997;82:2435–2438.
  • Saito Y, Utsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials – development of the accumulative roll-bonding (ARB) process. Acta Mater. 1999;47:579–583.
  • Lim SCV, Rollett AD. Length scale effects on recrystallization and texture evolution in Cu layers of a roll-bonded Cu-Nb composite. Mater Sci Eng A. 2009;520:189–196.
  • Huang B, Ishihara KN, Shingu PH. Preparation of high strength bulk nano-scale Fe/Cu multilayers by repeated pressing-rolling. J Mater Sci Lett. 2001;20:1669–1670.
  • Shahabi HS, Manesh HD. Micro-structural evaluation of Cu/Nb nano-layered composites produced by repeated press and rolling process. J Alloys Compd. 2009;482:526–534.
  • Sahay SS, Ravichandran KS, Byrne JG. Nanoscale brass/steel multilayer composites produced by cold rolling. Metall Mater Trans a-Phys Metall Mater Sci. 1996;27:2383–2385.
  • Kavarana FH, Ravichandran KS, Sahay SS. Nanoscale steel-brass multilayer laminates made by cold rolling: microstructure and tensile properties. Scr Mater. 2000;42:947–954.
  • Erb U, Aust KT, Palumbo G. Nanostructured materials – processing, properties, and applications. 2nd ed. New York: William Andrew; 2007.
  • Elsherik AM, Erb U. Synthesis of bulk nanocrystalline nickel by pulsed electrodeposition. J Mater Sci. 1995;30:5743–5749.
  • Lu L, Shen YF, Chen XH, et al. Ultrahigh strength and high electrical conductivity in copper. Science. 2004;304:422–426.
  • Detor AJ, Schuh CA. Tailoring and patterning the grain size of nanocrystalline alloys. Acta Mater. 2007;55:371–379.
  • Valiev RZ, Islamgaliev RK, Alexandrov IV. Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci. 2000;45:103–189.
  • Zhu YT, Liao XZ, Srinivasan SG, et al. Nucleation of deformation twins in nanocrystalline face-centered-cubic metals processed by severe plastic deformation. J Appl Phys. 2005;98:034319 -.
  • Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001;46:1–184.
  • Fu EG, Li N, Misra A, et al. Mechanical properties of sputtered Cu/V and Al/Nb multilayer films. Mater Sci Eng A. 2008;493:283–287.
  • Misra A, Hirth JP, Hoagland RG. Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 2005;53:$4817–4824.
  • Anderson PM, Li C. Hall-Petch relations for multilayered materials. Nanostruct Mater. 1995;5:349–362.
  • Anderson PM, Carpenter JS, Gram MD, et al. Handbook of nanomaterials properties. New York: Springer; 2014.
  • Cordero ZC, Knight BE, Schuh CA. Six decades of the hall-petch effect – a survey of grain-size strengthening studies on pure metals. Int Mater Rev. 2016;61:495–512.
  • Anderson PM, Hirth JP, Lothe J. Theory of dislocations. 3rd ed. New York: Cambridge University Press; 2017.
  • Kamat SV, Hirth JP, Carnahan B. Image forces on screw dislocations in multilayer structures. Scr Metall. 1987;21:1587–1592.
  • Shen Y, Anderson PM. Transmission of a screw dislocation across a coherent, slipping interface. Acta Mater. 2006;54:3941–3951.
  • Gram MD, Carpenter JS, Anderson PM. An indentation-based method to determine constituent strengths within nanolayered composites. Acta Mater. 2015;92:255–264.
  • Abel A, Muir H. Bauschinger effect and discontinuous yielding. Philos Mag. 1972;26:489 -&.
  • Cheng S, Stoica AD, Wang XL, et al. Deformation crossover: from nano- to mesoscale. Phys Rev Lett. 2009;103:035502.
  • Bitzek E, Derlet PM, Anderson PM, et al. The stress-strain response of nanocrystalline metals: a statistical analysis of atomistic simulations. Acta Mater. 2008;56:4846–4857.
  • Li X, Lu L, Li J, et al. Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys. Nat Rev Mater. 2020; in press.
  • Zeng Z, Li XY, Xu DS, et al. Gradient plasticity in gradient nano-grained metals. Extreme Mech Lett. 2016;8:213–219.
  • Wang Y, Yang GX, Wang WJ, et al. Optimal stress and deformation partition in gradient materials for better strength and tensile ductility: a numerical investigation. Sci Rep. 2017;7.
  • Cao P. The strongest size in gradient nanograined metals. Nano Lett. 2020;20:1440–1446. in press.
  • Zhao JF, Lu XC, Yuan FP, et al. Multiple mechanism based constitutive modeling of gradient nanograined material. Int J Plast. 2020;125:314–330.
  • Mughrabi H. Dislocation wall and cell structures and long-range internal-stresses in deformed metal crystals. Acta Metall. 1983;31:1367–1379.
  • Mughrabi H, Ungár T. Dislocations in solids. Amsterdam: Elsevier Science; 2002.
  • Mughrabi H. On the role of strain gradients and long-range internal stresses in the composite model of crystal plasticity. Mater Sci Eng A. 2001;317:171–180.
  • Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater. 2008;7:105–114.
  • Ploehn HJ. Materials science composite for energy storage takes the heat. Nature. 2015;523:536–537.
  • Shen K, Zhang L, Chen XD, et al. Ordered macro-microporous metal-organic framework single crystals. Science. 2018;359:206–210.
  • Mandal P, Pitcher MJ, Alaria J, et al. Designing switchable polarization and magnetization at room temperature in an oxide. Nature. 2015;525:363–367.
  • Zhang L, Zhou YJ, Guo L, et al. Correlated metals as transparent conductors. Nat Mater. 2016;15:204–210.
  • Li Q, Chen L, Gadinski MR, et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature. 2015;523:576–579.
  • Liu Y, Aziguli H, Zhang B, et al. Ferroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundary. Nature. 2018;562:96–100.
  • Malic B, Rojac T. High piezoelectricity via enhanced disorder. Nat Mater. 2018;17:297–298.
  • Zhang XY. Heterostructures: new opportunities for functional materials. Mater Res Lett. 2020;8:49–59.
  • Li XH, Lou L, Song WP, et al. Novel bimorphological anisotropic bulk nanocomposite materials with high energy products. Adv Mater. 2017;29:1606430.
  • Li XH, Lou L, Song WP, et al. Controllably manipulating three-dimensional hybrid nanostructures for bulk nanocomposites with large energy products. Nano Lett. 2017;17:2985–2993.
  • Biswas K, He JQ, Blum ID, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature. 2012;489:414–418.
  • Li F, Lin DB, Chen ZB, et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nature Mater. 2018;17:349–354.
  • Pan H, Li F, Liu Y, et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. Science. 2019;365:578–582.