1,834
Views
4
CrossRef citations to date
0
Altmetric
Original Reports

Breakdown of the superplastic deformation behavior of heterogeneous nanomaterials at small length scales

, ORCID Icon &
Pages 41-49 | Received 05 May 2020, Published online: 29 Sep 2020

References

  • Youssef KM, Abaza MA, Scattergood RO, et al. High strength, ductility, and electrical conductivity of in-situ consolidated nanocrystalline Cu-1% Nb. Mater Science and Engineering: A. 2018;711:350–355. doi: 10.1016/j.msea.2017.11.060
  • Kim JG, Enikeev NA, Seol JB, et al. Superior strength and multiple strengthening mechanisms in nanocrystalline TWIP steel. Sci Rep. 2018;8(1):1–10. doi: 10.1038/s41598-017-17765-5
  • Praveen S, Bae JW, Asghari-Rad P, et al. Ultra-high tensile strength nanocrystalline CoCrNi equi-atomic medium entropy alloy processed by high-pressure torsion. Mater Sci Eng: A. 2018;735:394–397. doi: 10.1016/j.msea.2018.08.079
  • Bokov A, Zhang S, Feng L, et al. Energetic design of grain boundary networks for toughening of nanocrystalline oxides. J Eur Ceram Soc. 2018;38(12):4260–4267. doi: 10.1016/j.jeurceramsoc.2018.05.007
  • Xiao Y, Zou Y, Ma H, et al. Nanostructured NbMoTaW high entropy alloy thin films: high strength and enhanced fracture toughness. Scr Mater. 2019;168:51–55. doi: 10.1016/j.scriptamat.2019.04.011
  • Mori H, Matsui I, Takigawa Y, et al. Revealing the intrinsic ductility of electrodeposited nanocrystalline metals. Mater Lett. 2019;235:224–227. doi: 10.1016/j.matlet.2018.10.053
  • Zhu YT, Wu XL. Ductility and plasticity of nanostructured metals: differences and issues. Mater Today Nano. 2018;2:15–20. doi: 10.1016/j.mtnano.2018.09.004
  • Ruppert M, Schunk C, Hausmann D, et al. Global and local strain rate sensitivity of bimodal Al-laminates produced by accumulative roll bonding. Acta Mater. 2016;103:643–650. doi: 10.1016/j.actamat.2015.11.009
  • Tian C, Ponge D, Christiansen L, et al. On the mechanical heterogeneity in dual phase steel grades: activation of slip systems and deformation of martensite in DP800. Acta Mater. 2020;183:274–284. doi: 10.1016/j.actamat.2019.11.002
  • Teles VC, de Mello JDB, da Silva Jr WM. Abrasive wear of multilayered/gradient CrAlSiN PVD coatings: effect of interface roughness and of superficial flaws. Wear. 2017;376-377:1691–1701. doi: 10.1016/j.wear.2017.01.116
  • Wu X, Zhu Y. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Lett. 2017;5(8):527–532. doi: 10.1080/21663831.2017.1343208
  • Tian L, Li L. A review on the strengthening of nanostructured materials. Int J Curr Eng Technol. 2018;8:236–249. doi: 10.14741/ijcet/v.8.2.7
  • Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Prog Mater Sci. 2006;51(4):427–556. doi: 10.1016/j.pmatsci.2005.08.003
  • Hefti LD. Commercial airplane applications of superplastically formed AA5083 aluminum sheet. J Mater Eng Perform. 2007;16(2):136–141. doi: 10.1007/s11665-007-9023-5
  • Tang JS, Fuh YK, Lee S. Superplastic forming process applied to aero-industrial strakelet: wrinkling, thickness, and microstructure analysis. Int J Adv Manuf Technol. 2015;77(5-8):1513–1523. doi: 10.1007/s00170-014-6527-7
  • Alabort E, Putman D, Reed RC. Superplasticity in Ti–6Al–4V: characterisation, modelling and applications. Acta Mater. 2015;95:428–442. doi: 10.1016/j.actamat.2015.04.056
  • Alabort E, Kontis P, Barba D, et al. On the mechanisms of superplasticity in Ti–6Al–4 V. Acta Mater. 2016;105:449–463. doi: 10.1016/j.actamat.2015.12.003
  • May J, Höppel HW, Göken M. Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation. Scr Mater. 2005;53(2):189–194. doi: 10.1016/j.scriptamat.2005.03.043
  • Langdon TG. Seventy-five years of superplasticity: historic developments and new opportunities. J Mater Sci. 2009;44(22):5998–6010. doi: 10.1007/s10853-009-3780-5
  • Chen FK, Tsai JW. A study of size effect in micro-forming with micro-hardness tests. J Mater Process Technol. 2006;177(1-3):146–149. doi: 10.1016/j.jmatprotec.2006.04.115
  • Gau JT, Principe C, Wang J. An experimental study on size effects on flow stress and formability of aluminm and brass for microforming. J Mater Process Technol. 2007;184(1-3):42–46. doi: 10.1016/j.jmatprotec.2006.11.003
  • Saotome Y, Imai K, Shioda S, et al. The micro-nanoformability of Pt-based metallic glass and the nanoforming of three-dimensional structures. Intermetallics. 2002;10(11-12):1241–1247. doi: 10.1016/S0966-9795(02)00135-8
  • Saotome Y, Imai K, Sawanobori N. Microformability of optical glasses for precision molding. J Mater Process Technol. 2003;140(1-3):379–384. doi: 10.1016/S0924-0136(03)00828-8
  • Choi IC, Kim YJ, Ahn B, et al. Evolution of plasticity, strain rate sensitivity and the underlying deformation mechanism in Zn–22% Al during high-pressure torsion. Scr Mater. 2014;75:102–105. doi: 10.1016/j.scriptamat.2013.12.003
  • Feldner P, Merle B, Göken M. Superplastic deformation behavior of Zn-22% Al alloy investigated by nanoindentation at elevated temperatures. Mater Des. 2018;153:71–79. doi: 10.1016/j.matdes.2018.05.008
  • Merle B, Higgins WH, Pharr GM. Critical issues in conducting constant strain rate nanoindentation tests at higher strain rates. J Mater Res. 2019;34(20):3495–3503. doi: 10.1557/jmr.2019.292
  • Maier V, Merle B, Göken M, et al. An improved long-term nanoindentation creep testing approach for studying the local deformation processes in nanocrystalline metals at room and elevated temperatures. J Mater Res. 2013;28(9):1177–1188. doi: 10.1557/jmr.2013.39
  • Feldner P, Merle B, Göken M. Determination of the strain rate sensitivity of ultrafine-grained materials by spherical nanoindentation. J Mater Res. 2017;32(8):1466–1473. doi: 10.1557/jmr.2017.69
  • Ishikawa H, Mohamed FA, Langdon TG. The influence of strain rate on ductility in the superplastic Zn–22% Al eutectoid. Philos Mag. 1975;32(6):1269–1271. doi: 10.1080/14786437508228105
  • Mishra RS, Valiev RZ, Mukherjee AK. The observation of tensile superplasticity in nanocrystalline materials. Nanostruct Mater. 1997;9(1-8):473–476. doi: 10.1016/S0965-9773(97)00103-7
  • Jiménez JA, Frommeyer G, Carsı´ M, et al. Superplastic properties of a δ/γ stainless steel. Mater Sci Eng: A. 2001;307(1-2):134–142. doi: 10.1016/S0921-5093(00)01828-1
  • Yang KL, Huang JC, Wang YN. Phase transformation in the β phase of super α2 Ti3Al base alloys during static annealing and superplastic deformation at 700–1000° C. Acta Mater. 2003;51(9):2577–2594. doi: 10.1016/S1359-6454(03)00057-0
  • Wang W, Yang M, Yan D, et al. Deformation mechanisms for superplastic behaviors in a dual-phase high specific strength steel with ultrafine grains. Mater Sci Eng: A. 2017;702:133–141. doi: 10.1016/j.msea.2017.07.011
  • Cheng L, Li J, Xue X, et al. Superplastic deformation mechanisms of high Nb containing TiAl alloy with (α2+ γ) microstructure. Intermetallics. 2016;75:62–71. doi: 10.1016/j.intermet.2016.06.003
  • Wu ZX, Zhang YW, Jhon MH, et al. Anatomy of nanomaterial deformation: grain boundary sliding, plasticity and cavitation in nanocrystalline Ni. Acta Mater. 2013;61(15):5807–5820. doi: 10.1016/j.actamat.2013.06.026
  • Aitken ZH, Jang D, Weinberger CR, et al. Grain boundary sliding in aluminum nano-Bi-crystals deformed at room temperature. Small. 2014;10(1):100–108. doi: 10.1002/smll.201301060
  • Kaibyshev OA, Rodionov BV, Valiev RZ. Peculiarities of dislocation slip during superplastic deformation of Zn-Al alloys. Acta Metall. 1978;26(12):1877–1886. doi: 10.1016/0001-6160(78)90100-1