2,448
Views
12
CrossRef citations to date
0
Altmetric
Original Reports

Gradient bandgap narrowing in severely deformed ZnO nanoparticles

, , , , &
Pages 58-64 | Received 10 Jun 2020, Published online: 06 Oct 2020

References

  • Estrin Y, Bréchet Y, Dunlop J, et al. Architectured materials in nature and engineering. Cham, Switzerland: Springer Nature Switzerland AG; 2019.
  • Lu K. Making strong nanomaterials ductile with gradients. Science. 2014;345(6203):1455–1456.
  • Yang M, Pan Y, Yuan F, et al. Back stress strengthening and strain hardening in gradient structure. Mater Res Lett. 2016;4(3):145–151.
  • Wu X, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure. Proc Natl Acad Sci USA. 2014;111(20):7197–7201.
  • Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat Rev Mater. 2016;1(5):1–13.
  • Estrin Y, Vinogradov A. Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater. 2013;61(3):782–817.
  • Setman D, Schafler E, Korznikova E, et al. The presence and nature of vacancy type defects in nanometals detained by severe plastic deformation. Mater Sci Eng A. 2008;493(1):116–122.
  • Deng B, Rosa AL, Frauenheim T, et al. Oxygen vacancy diffusion in bare ZnO nanowires. Nanoscale. 2014;6(20):11882–11886.
  • Amodeo J, Carrez P, Cordier P. Modelling the effect of pressure on the critical shear stress of MgO single crystals. Phil Mag. 2012;92(12):1523–1541.
  • Qi Y, Kosinova A, Kilmametov AR, et al. Plastic flow and microstructural instabilities during high-pressure torsion of Cu/ZnO composites. Mater Charact. 2018;145:389–401.
  • Edalati K. Review on recent advancements in severe plastic deformation of oxides by high-pressure torsion (HPT). Adv Eng Mater. 2019;21(1):1800272.
  • Bridgman P. The effect of hydrostatic pressure on the fracture of brittle substances. J Appl Phys. 1947;18(2):246–258.
  • Edalati K, Arimura M, Ikoma Y, et al. Plastic deformation of BaTiO3 ceramics by high-pressure torsion and changes in phase transformations, optical and dielectric properties. Mater Res Lett. 2015;3(4):216–221.
  • Razavi-Khosroshahi H, Edalati K, Hirayama M, et al. Visible-light-driven photocatalytic hydrogen generation on nanosized TiO2-II stabilized by high-pressure torsion. ACS Catal. 2016;6(8):5103–5107.
  • Razavi-Khosroshahi H, Edalati K, Wu J, et al. High-pressure zinc oxide phase as visible-light-active photocatalyst with narrow band gap. J Phys Chem A. 2017;5(38):20298–20303.
  • Edalati K, Fujita I, Takechi S, et al. Photocatalytic activity of aluminum oxide by oxygen vacancy generation using high-pressure torsion straining. Scr Mater. 2019;173:120–124.
  • Razavi-Khosroshahi H, Edalati K, Emami H, et al. Optical properties of nanocrystalline monoclinic Y2O3 stabilized by grain size and plastic strain effects via high-pressure torsion. Inorg Chem. 2017;56(5):2576–2580.
  • Edalati K, Uehiro R, Takechi S, et al. Enhanced photocatalytic hydrogen production on GaN–ZnO oxynitride by introduction of strain-induced nitrogen vacancy complexes. Acta Mater. 2020;185:149–156.
  • Cai W, Nix WD. Imperfections in crystalline solids. Cambridge: Cambridge University Press; 2016.
  • Moezzi A, McDonagh AM, Cortie MB. Zinc oxide particles: synthesis, properties and applications. Chem Eng J. 2012;185:1–22.
  • Xia K. Consolidation of particles by severe plastic deformation: mechanism and applications in processing bulk ultrafine and nanostructured alloys and composites. Adv Eng Mater. 2010;12(8):724–729.
  • Qi Y, Kosinova A, Kilmametov AR, et al. Stabilization of ultrafine-grained microstructure in high-purity copper by gas-filled pores produced by severe plastic deformation. Scr Mater. 2020;178:29–33.
  • Iakoubovskii K, Mitsuishi K, Nakayama Y, et al. Thickness measurements with electron energy loss spectroscopy. Micr Res Tech. 2008;71(8):626–631.
  • Malis T, Cheng S, Egerton R. EELS log-ratio technique for specimen-thickness measurement in the TEM. J Electron Microsc Tech. 1988;8(2):193–200.
  • Zhan W. Band gap mapping of alloyed ZnO using probe-corrected and monochromated STEM-EELS [dissertation]. University of Oslo; 2018.
  • Park J, Heo S, Chung J-G, et al. Bandgap measurement of thin dielectric films using monochromated STEM-EELS. Ultramicroscopy. 2009;109(9):1183–1188.
  • Virdi KS, Kauffmann Y, Ziegler C, et al. Band gap extraction from individual two-dimensional perovskite nanosheets using valence electron energy loss spectroscopy. J Phys Chem C. 2016;120(20):11170–11179.
  • Wei J, Ogawa T, Feng B, et al. Direct measurement of electronic band structures at oxide grain boundaries. Nano Lett. 2020;20(4):2530–2536.
  • Erni R, Browning ND. The impact of surface and retardation losses on valence electron energy-loss spectroscopy. Ultramicroscopy. 2008;108(2):84–99.
  • Meyer B. ZnO: dielectric constants. New data and updates for IV–IV, III–V, II–VI and I–VII compounds, their mixed crystals and diluted magnetic semiconductors. Berlin Heidelberg: Springer; 2011. p. 593–593.
  • Sarkar A, Ghosh S, Chaudhuri S, et al. Studies on electron transport properties and the Burstein-Moss shift in indium-doped ZnO films. Thin Solid Films. 1991;204(2):255–264.
  • Sun J, Wang H-T, He J, et al. Ab initio investigations of optical properties of the high-pressure phases of ZnO. Phys Rev B. 2005;71(12):125132.
  • Huang MR, Erni R, Lin H-Y, et al. Characterization of wurtzite ZnO using valence electron energy loss spectroscopy. Phys Rev B. 2011;84(15):155203.
  • Chakraborty M, Ghosh A, Thangavel R. Experimental and theoretical investigations of structural and optical properties of copper doped ZnO nanorods. J Sol-Gel Technol. 2015;74(3):756–764.
  • Chattopadhyay S, et al. Dislocations and particle size governed bandgap and ferromagnetic ordering in Ni-doped ZnO nanoparticles synthesized via co-precipitation. Ceram Int. 2019;45(17):23341–23354.
  • Zhang C, Geng X, Liao H, et al. Room-temperature nitrogen-dioxide sensors based on ZnO1−x coatings deposited by solution precursor plasma spray. Sens Actuators B Chem. 2017;242:102–111.
  • Wang J, Chen R, Xiang L, et al. Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: a review. Ceram Int. 2018;44(7):7357–7377.
  • Zehetbauer M, Steiner G, Schafler E, et al. Deformation induced vacancies with severe plastic deformation: measurements and modelling. Mater Sci Forum. 2006;503–504:57–64.
  • Fecht H. Defect-induced melting and solid-state amorphization. Nature. 1992;356(6365):133–135.
  • Ahn CC. Transmission electron energy loss spectrometry in materials science and the EELS atlas. Weinheim: Wiley-VCH; 2004.
  • Lee JH, Lee WJ, Lee SH, et al. Atomic-scale origin of piezoelectricity in wurtzite ZnO. Phys Chem Chem Phys. 2015;17(12):7857–7863.
  • Ellmer K, Klein A, Rech B. Transparent conductive zinc oxide: basics and applications in thin film solar cells. Vol. 104. Berlin Heidelberg: Springer Science & Business Media; 2007.
  • Ding Y, Wang ZL. Electron energy-loss spectroscopy study of ZnO nanobelts. J Electron Microsc Tech. 2005;54(3):287–291.
  • Jollet F, Noguera C, Thromat N, et al. Electronic structure of yttrium oxide. Phys Rev B. 1990;42(12):7587.
  • Travlos A, Boukos N, Apostolopoulos G, et al. Oxygen vacancy ordering in epitaxial layers of yttrium oxide on Si (001). Appl Phys Lett. 2003;82(23):4053–4055.
  • Ou DR, Mori T, Ye F, et al. Oxygen-vacancy ordering in lanthanide-doped ceria: dopant-type dependence and structure model. Phys Rev B. 2008;77(2):024108.
  • Torruella P, Coll C, Martín G, et al. Assessing oxygen vacancies in bismuth oxide through EELS measurements and DFT simulations. J Phys Chem C. 2017;121(44):24809–24815.
  • Filatova EO, Konashuk AS. Interpretation of the changing the band gap of Al2O3 depending on its crystalline form: connection with different local symmetries. J Phys Chem C. 2015;119(35):20755–20761.
  • Pérez-Tomás A, Mingorance A, Tanenbaum D, et al. Chapter 8 – metal oxides in photovoltaics: all-oxide, ferroic, and perovskite solar cells. In: Lira-Cantu M, editor. The future of semiconductor oxides in next-generation solar cells. Amsterdam: Elsevier; 2018. p. 267–356.
  • Guo F, Li N, Fecher FW, et al. A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells. Nat Commun. 2015;6(1):1–9.