1,865
Views
15
CrossRef citations to date
0
Altmetric
Original Reports

Microstructural evolution of nanotwinned Al-Zr alloy with significant 9R phase

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 91-98 | Received 13 Aug 2020, Published online: 24 Nov 2020

References

  • Shin J, Kim T, Kim DE, et al. Castability and mechanical properties of new 7xxx aluminum alloys for automotive chassis/body applications. J Alloys Compd. 2017;698:577–590.
  • Liddicoat PV, Liao XZ, Zhao Y, et al. Nanostructural hierarchy increases the strength of aluminium alloys. Nat Comm. 2010;1(6):1–7.
  • Ma K, Wen H, Hu T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater. 2014;62(1):141–155.
  • Hall EO. The deformation and ageing of mild steel: III discussion and results. Proc Phys Soc Sect B. 1951;64(9):747–753.
  • Petch NJ. The cleavage strength of polycrystals. J Iron Steel Inst. 1953;174:25–28.
  • Fleischer RLL. Substitutional solution hardening. Acta Metall. 1963;11:203–209.
  • Yen Ø, Sjölander E, Sjölander S, et al. Strengthening mechanisms in solid solution aluminum alloys. Metall Mater Trans A. 2006;37A:1999–2006.
  • Jobba M, Mishra RK, Niewczas M. Flow stress and work-hardening behaviour of Al-Mg binary alloys. Int J Plast. 2015;65:43–60.
  • Kamikawa N, Hirochi T, Furuhara T. Strengthening mechanisms in ultrafine-grained and sub-grained high-purity aluminum. Metall Mater Trans A. 2019;50(1):234–248.
  • Esquivel J, Wachowiak MG, O’Brien SP, et al. Thermal stability of nanocrystalline Al-5at.%Ni and Al-5at.%V alloys produced by high-energy ball milling. J Alloys Compd. 2018;744:651–657.
  • Beyerlein IJ, Zhang X, Misra A. Growth twins and deformation twins in metals. Annu Rev Mater Res. 2014;44(1):329–363.
  • Lu L, Shen Y, Chen X, et al. Ultrahigh strength and high electrical conductivity in copper. Science. 2004;304(5669):422–426.
  • Lu L, Chen X, Huang X, et al. Revealing the maximum strength in nanotwinned copper. Science. 2009;323(5914):607–610.
  • Anderoglu O, Misra A, Wang H, et al. Epitaxial nanotwinned Cu films with high strength and high conductivity. Appl Phys Lett. 2008;93(8):5–8.
  • Bufford D, Wang H, Zhang X. High strength, epitaxial nanotwinned Ag films. Acta Mater. 2011;59(1):93–101.
  • Zhang X, Misra A, Wang H, et al. Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning. Acta Mater. 2004;52(4):995–1002.
  • Zhang X, Misra A, Wang H, et al. Strengthening mechanisms in nanostructured copper/304 stainless steel multilayers. J Mater Res. 2003;18(7):1600–1606.
  • Anderoglu O, Misra A, Wang J, et al. Plastic flow stability of nanotwinned Cu foils. Int J Plast. 2010;26(6):875–886.
  • Jin ZH, Gumbsch P, Albee K, et al. Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals. Acta Mater. 2008;56(5):1126–1135.
  • Wang YM, Sansoz F, LaGrange T, et al. Defective twin boundaries in nanotwinned metals. Nat Mater. 2013;12(8):697–702.
  • Liu Y, Jian J, Chen Y, et al. Plasticity and ultra-low stress induced twin boundary migration in nanotwinned Cu by in situ nanoindentation studies. Appl Phys Lett. 2014;104(23):231910.
  • Bufford D, Liu Y, Wang J, et al. In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries. Nat Commun. 2014;5:1–8.
  • Lee JH, Holland TB, Mukherjee AK, et al. Direct observation of Lomer-Cottrell locks during strain hardening in nanocrystalline nickel by in situ TEM. Sci Rep. 2013;3:1061.
  • Schulthess TC, Turchi PEA, Gonis A. Systematic study of stacking fault energies of random Al-based alloys. Acta Mater. 1998;46(6):2215–2221.
  • Bufford D, Liu Y, Zhu Y, et al. Formation mechanisms of high-density growth twins in aluminum with high stacking-fault energy. Mater Res Lett. 2013;1(1):51–60.
  • Zhang X, Bufford D, Wang H, et al. Method for producing high stacking fault energy (SFE) metal films, foils, and coatings with high-density nanoscale twin boundaries. 2018. 10023977 B2.
  • Yu KY, Bufford D, Chen Y, et al. Basic criteria for formation of growth twins in high stacking fault energy metals. Appl Phys Lett. 2013;103(18):181903.
  • Xue S, Fan Z, Chen Y, et al. The formation mechanisms of growth twins in polycrystalline Al with high stacking fault energy. Acta Mater. 2015;101:62–70.
  • Xue S, Kuo W, Li Q, et al. Texture-directed twin formation propensity in Al with high stacking fault energy. Acta Mater. 2018;144:226–234.
  • Li Q, Xue S, Wang J, et al. High-strength nanotwinned Al alloys with 9R phase. Adv Mater. 2018;30(11):1–9.
  • Zhang YF, Xue S, Li Q, et al. Microstructure and mechanical behavior of nanotwinned AlTi alloys with 9R phase. Scr Mater. 2018;148:5–9.
  • Zhang YF, Li Q, Xue S, et al. Ultra-strong nanotwinned Al–Ni solid solution alloys with significant plasticity. Nanoscale. 2018;10:22025–22034.
  • Xue S, Li Q, Xie DY, et al. High strength, deformable nanotwinned Al–Co alloys. Mater Res Lett. 2019;7(1):33–39.
  • Zhang YF, Li Q, Gong M, et al. Deformation behavior and phase transformation of nanotwinned Al/Ti multilayers. App Surf Sci. 2020;527:146776.
  • Li Q, Xie D, Shang Z, et al. Coupled solute effects enable anomalous high-temperature strength and stability in nanotwinned Al alloys. Acta Mater. 2020;200:378–388.
  • Zhang Y, Su R, Xie D, et al. Design of super-strong and thermally stable nanotwinned Al alloys via solute synergy. Nanoscale;12(39). 2020.
  • Wang J, Anderoglu O, Hirth JP, et al. Dislocation structures of σ3 112 twin boundaries in face centered cubic metals. Appl Phys Lett. 2009;95(2):93–96.
  • Wang J, Li N, Anderoglu O, et al. Detwinning mechanisms for growth twins in face-centered cubic metals. Acta Mater. 2010;58(6):2262–2270.
  • Hayes RW, Witkin D, Zhou F, et al. Deformation and activation volumes of cryomilled ultrafine-grained aluminum. Acta Mater. 2004;52(14):4259–4271.
  • Rupert TJ, Trenkle JC, Schuh CA. Enhanced solid solution effects on the strength of nanocrystalline alloys. Acta Mater. 2011;59(4):1619–1631.
  • Misra A, Hirth JP, Hoagland RG. Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 2005;53(18):4817–4824.
  • Mata M, Anglada M, Alcalá J. Contact deformation regimes around sharp indentations and the concept of the characteristic strain. J Mater Res. 2002;17(5):964–976.
  • Ding J, Neffati D, Li Q, et al. Thick grain boundary induced strengthening in nanocrystalline Ni alloy. Nanoscale. 2019;11(48):23449–23458.
  • Zhang X, Misra A, Wang H, et al. Nanoscale-twinning-induced strengthening in austenitic stainless steel thin films. Appl Phys Lett. 2004;84(7):1096–1098.
  • Gu P, Kad BK, Dao M. A modified model for deformation via partial dislocations and stacking faults at the nanoscale. Scrip Mater. 2010;62(6):361–364.