3,918
Views
32
CrossRef citations to date
0
Altmetric
Report

Superconductivity in CuAl2-type Co0.2Ni0.1Cu0.1Rh0.3Ir0.3Zr2 with a high-entropy-alloy transition metal site

, &
Pages 141-147 | Received 21 Sep 2020, Published online: 20 Dec 2020

References

  • Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6:299–303.
  • Tsai MH, Yeh JW. High-entropy alloys: acritical review. Mater Res Lett. 2014;2:107–123.
  • Feuerbacher M, Lienig T, Thomas C. A single-phase bcc high-entropy alloy in the refractory Zr-Nb-Ti-V-Hf system. Scr Mater. 2018;152:40–43.
  • Manzoni A, Daoud H, Völkl R, et al. Phase separation in equiatomic AlCoCrFeNi high-entropy alloy. Ultramicroscopy. 2013;132:212–215.
  • Matsumoto K, Mele P. Artificial pinning center technology to enhance vortex pinning in YBCO coated conductors. Supercond Sci Technol. 2009;23(1–12):014001.
  • McElroy K, Lee J, Slezak JA, et al. Atomic-scale sources and mechanism of nanoscale electronic disorder in Bi2Sr2CaCu2O8+δ. Science. 2005;309:1048–1052.
  • Dou SX, Soltanian S, Horvat J, et al. Enhancement of the critical current density and flux pinning of MgB2 superconductor by nanoparticle SiC doping. Appl Phys Lett. 2002;81:3419–3421.
  • Koželj P, Vrtnik S, Jelen A, et al. Discovery of a superconducting high-entropy alloy. Phys Rev Lett. 2014;113(1–5):107001.
  • Sun L, Cava RJ. High-entropy alloy superconductors: status, opportunities, and challenges. Phys Rev Mater. 2019;3(1–10):090301.
  • Marik S, Varghese M, Sajilesh KP, et al. Superconductivity in a new hexagonal high-entropy alloy. Phys Rev Mater. 2019;3(1–6):060602.
  • Vrtnik S, Kozelj P, Meden A, et al. Superconductivity in thermally annealed Ta-Nb-Hf-Zr-Ti high-entropy alloys. J Alloy Compound. 2017;695:3530–3540.
  • Stolze K, Cevallos FA, Kong T, et al. High-entropy alloy superconductors on an α-Mn lattice. J Mater Chem C. 2018;6:10441–10449.
  • Yuan Y, Wu Y, Luo H, et al. Superconducting Ti15Zr15Nb35Ta35 high-entropy alloy with intermediate electron-phonon coupling. Front Mater. 2018;5(1–6):72.
  • Ishizu N, Kitagawa J. New high-entropy alloy superconductor Hf21Nb25Ti15V15Zr24. Results Phys. 2019;13(1–2):102275.
  • von Rohr FO, Cava RJ. Isoelectronic substitutions and aluminium alloying in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor. Phys Rev Mater. 2018;2(1–7):034801.
  • Guo J, Wang H, von Rohr FO, et al. Robust zero resistance in a superconducting high-entropy alloy at pressures up to 190GPa. Proc Natl Acad Sci USA. 2017;114:13144–13147.
  • Stolze K, Tao J, von Rohr FO, et al. Sc–zr–Nb–Rh–Pd and Sc–Zr–Nb–Ta–Rh–Pd high-entropy alloy superconductors on a CsCl-type lattice. Chem Mater. 2018;30:906–914.
  • Sogabe R, Goto Y, Mizuguchi Y. Superconductivity in REO0.5F0.5BiS2 with high-entropy-alloy-type blocking layers. Appl Phys Express. 2018;11(1–5):053102.
  • Shukunami Y, Yamashita A, Goto Y, et al. Synthesis of RE123 high-Tc superconductors with a high-entropy-alloy-type RE site. Physica C. 2020;572(1–5):1353623.
  • Sogabe R, Goto Y, Abe T, et al. Improvement of superconducting properties by high mixing entropy at blocking layers in BiS2-based superconductor REO0.5F0.5BiS2. Solid State Commun. 2019;295:43–49.
  • Mizuguchi Y, Hoshi K, Goto Y, et al. Evolution of anisotropic displacement parameters and superconductivity with Chemical Pressure in BiS2-based REO0.5F0.5BiS2 (RE=La, Ce. Pr, and Nd). J Phys Soc Jpn. 2018;87(1–4):023704.
  • Fujita Y, Kinami K, Hanada Y, et al. Growth and characterization of ROBiS2 high-entropy superconducting single crystals. ACS Omega. 2020;5:16819–16825.
  • Mizuguchi Y. Superconductivity in high-entropy-alloy telluride AgInSnPbBiTe5. J Phys Soc Jpn. 2019;88(1–5):124708.
  • Kasem Md R, Hoshi K, Jha R, et al. Superconducting properties of high-entropy-alloy tellurides M-Te (M: Ag, In, Cd, Sn, Sb, Pb, Bi) with a NaCl-type structure. Appl Phys Express. 2020;13(1–4):033001.
  • Yamashita A, Jha R, Goto Y, et al. An efficient way of increasing the total entropy of mixing in high-entropy-alloy compounds: a case of NaCl-type (Ag,In,Pb,Bi)Te1−xSex (x = 0.0, 0.25, 0.5) superconductors. Dalton Trans. 2020;49:9118–9122.
  • SuperCon. NIMS database; https://supercon.nims.go.jp/supercon/.
  • Fisk Z, Viswanathan R, Webb GW. The relation between normal state properties and Tc FOR SOME Zr2X compounds. Solid State Commun. 1974;15:1797–1799.
  • Matthias BT, Corenzwit E. Superconductivity of zirconium alloys. Phys Rev. 1955;100:626–627.
  • Lefebvre J, Hilke M, Altounian Z. Superconductivity and short-range order in metallic glasses FexNi1-xZr2. Phys Rev B. 2009;79(1–8):184525.
  • Syu KJ, Chen SC, Wu HH, et al. Superconductivity in Zr2(Co1−xCux). Physica C. 2013;495:10–14.
  • Izumi F, Momma K. Three-dimensional visualization in powder diffraction. Solid State Phenom. 2007;130:15–20.
  • Momma K, Izumi F. VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr. 2008;41:653–658.
  • Teruya A, Kakihana M, Takeuchi T, et al. Superconducting and fermi surface properties of single crystal Zr2Co. J Phys Soc Jpn. 2016;85(1–10):034706.
  • Werthamer NR, Helfand E, Hohenberg PC. Temperature and purity dependence of the superconducting critical field, Hc2. III. Electron spin and spin-orbit effects. Phys Rev. 1966;147:295–302.
  • Bardeen J, Cooper L, Schrieffer JR. Theory of superconductivity. Phys Rev. 1957;108:1175–1204.
  • CompES-X, NIMS database: https://compes-x.nims.go.jp/