1,389
Views
4
CrossRef citations to date
0
Altmetric
Report

Impact of epitaxial strain on crystal field splitting of α-Cr2O3(0001) thin films quantified by X-ray photoemission spectroscopy

ORCID Icon, , , &
Pages 163-168 | Received 09 Jul 2020, Published online: 14 Jan 2021

References

  • Hu J-M, Nan C-W. Opportunities and challenges for magnetoelectric devices. APL Mater. 2019;7:080905.
  • Cheong S-W, Fiebig M, Wu W, et al. Seeing is believing: visualization of antiferromagnetic domains. Quantum Mater. 2020;5:1–2.
  • Kosub T, Kopte M, Radu F, et al. All-electric access to the magnetic-field-invariant magnetization of antiferromagnets. Phys Rev Lett. 2015;115:097201.
  • Kosub T, Kopte M, Hühne R, et al. Purely antiferromagnetic magnetoelectric random access memory. Nat Commun. 2017;8:13985.
  • He X, Wang Y, Wu N, et al. Robust isothermal electric control of exchange bias at room temperature. Nat Mater. 2010;9:579–585.
  • Wang J-L, Echtenkamp W, Mahmood A, et al. Voltage controlled magnetism in Cr2O3 based all-thin-film systems. J Magn Magn Mater. 2019;486:165262.
  • Gorodetsky G, Hornreich RM, Shtrikman S. Magnetoelectric determination of the pressure-induced TN shift in Cr2O3. Phys Rev Lett. 1973;31:938–940.
  • Nozaki T, Sahashi M. Magnetoelectric manipulation and enhanced operating temperature in antiferromagnetic Cr2O3 thin film. Jpn J Appl Phys. 2018;57:0902A2.
  • Kota Y, Imamura H, Sasaki M. Strain-induced néel temperature enhancement in corundum-type Cr2O3 and Fe2O3. Appl Phys Express. 2013;6:113007.
  • Gupta RP, Sen SK. Calculation of multiplet structure of core p-vacancy levels. II. Phys Rev B. 1975;12:15–19.
  • Biesinger MC, Brown C, Mycroft JR, et al. X-ray photoelectron spectroscopy studies of chromium compounds. Surf Interf Anal. 2004;36:1550–1563.
  • Zhang L, Kuhn M, Diebold U. Growth, structure and thermal properties of chromium oxide films on Pt(111). Surf Sci. 1997;375:1–12.
  • Chambers SA, Droubay T. Role of oxide ionicity in electronic screening at oxide/metal interfaces. Phys Rev B. 2001;64:075410.
  • Bataillou L, Martinelli L, Desgranges C, et al. Growth kinetics and characterization of chromia scales formed on Ni–30Cr alloy in impure argon at 700°C. Oxid Met. 2020;93:329–353.
  • Chambers SA, Liang Y, Gao Y. Noncommutative band offset at α-Cr2O3/α-Fe2O3(0001) heterojunctions. Phys Rev B. 2000;61:13223–13229.
  • Moussy J-B. From epitaxial growth of ferrite thin films to spin-polarized tunnelling. J Phys D: Appl Phys. 2013;46:143001.
  • Barbier A, Belkhou R, Ohresser P, et al. Electronic and crystalline structure, morphology, and magnetism of nanometric Fe2O3 layers deposited on Pt(111) by atomic-oxygen-assisted molecular beam epitaxy. Phys Rev B. 2005;72:245423.
  • Barbier A, Bezencenet O, Mocuta C, et al. Dislocation network driven structural relaxation in hematite thin films. Mater Sci Eng B. 2007;144:19–22.
  • Spaepen F. Interfaces and stresses in thin films. Acta Mater. 2000;48:31–42.
  • De Groot F, Kotani A. Core level spectroscopy of solids. Boca Raton: CRC Press; 2008.
  • Cowan RD. The theory of atomic structure and spectra. Berkeley: University of California Press; 1981.
  • Haverkort MW, Zwierzycki M, Andersen OK. Multiplet ligand-field theory using Wannier orbitals. Phys Rev B. 2012;85:165113.
  • Haverkort MW, Sangiovanni G, Hansmann P, et al. Bands, resonances, edge singularities and excitons in core level spectroscopy investigated within the dynamical mean-field theory. Europhys Lett. 2014;108:57004.
  • Lu Y, Höppner M, Gunnarsson O, et al. Efficient real frequency solver for dynamical mean field theory. Phys Rev B. 2014;90:085102.
  • Retegan M. Crispy: version 0.7.3 [Internet]. 2019. DOI:10.5281/zenodo.1008184.
  • Newnham RE, Haan YM. Refinement of the α-Al2O3, Ti2O3, V2O3 and Cr2O3 structures. Zeitschr Kristallogr. 1962;117:235–237.
  • Konig E, Kremer S. Ligand field: energy diagrams. New York: Plenum Press; 1977.
  • Vasconcelos Borges Pinho P, Chartier A, Moussy J-B, et al. Crystal field effects on the photoemission spectra in Cr2O3 thin films: from multiplet splitting features to the local structure. Materialia. 2020;12:100753.
  • Brik MG, Avram NM, Avram CN. Crystal field analysis of energy level structure of the Cr2O3 antiferromagnet. Solid State Commun. 2004;132:831–835.
  • Vercamer V, Hunault MOJY, Lelong G, et al. Calculation of optical and K pre-edge absorption spectra for ferrous iron of distorted sites in oxide crystals. Phys Rev B. 2016;94:1–15.
  • Juhin A, Brouder C, Arrio M-A, et al. X-ray linear dichroism in cubic compounds: the case of Cr3+ in MgAl2O4. Phys Rev B. 2008;78:1–19.
  • Kang SK, Tang H, Albright TA. Structures for d0 ML6 and ML5 complexes. J Am Chem Soc. 1993;115:1971–1981.
  • Kaspar TC, Chamberlin SE, Bowden ME, et al. Impact of lattice mismatch and stoichiometry on the structure and bandgap of (Fe,Cr)2O3 epitaxial thin films. J Phys Condens Matter. 2014;26:135005.
  • Mu S, Belashchenko KD. Influence of strain and chemical substitution on the magnetic anisotropy of antiferromagnetic Cr2O3: an ab-initio study. Phys Rev Mater. 2019;3:034405.
  • Shimomura N, Pati SP, Nozaki T, et al. Enhancing the blocking temperature of perpendicular-exchange biased Cr2O3 thin films using buffer layers. AIP Adv. 2017;7:025212.
  • Nozaki T, Shiokawa Y, Kitaoka Y, et al. Large perpendicular exchange bias and high blocking temperature in Al-doped Cr2O3/Co thin film systems. Appl Phys Express. 2017;10:073003.