2,820
Views
19
CrossRef citations to date
0
Altmetric
Original Reports

Ordering-mediated local nano-clustering results in unusually large Hall-Petch strengthening coefficients in high entropy alloys

, , , , &
Pages 213-222 | Received 13 Nov 2020, Published online: 23 Jan 2021

References

  • Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511.
  • Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1–93.
  • Wu Z, Bei H, Otto F, et al. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics. 2014;46:131–140.
  • Yoshida S, Ikeuchi T, Bhattacharjee T, et al. Effect of elemental combination on friction stress and Hall-Petch relationship in face-centered cubic high / medium entropy alloys. Acta Mater. 2019;171:201–215.
  • Wang WR, Wang WL, Wang SC, et al. Effects of Al addition on the microstructure and mechanical property of Al xCoCrFeNi high-entropy alloys. Intermetallics. 2012;26:44–51.
  • Fujieda T, Chen M, Shiratori H, et al. Mechanical and corrosion properties of CoCrFeNiTi-based high-entropy alloy additive manufactured using selective laser melting. Addit Manuf. 2019;25:412–420.
  • Fu Z, Chen W, Xiao H, et al. Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA-SPS technique. Mater Des. 2013;44:535–539.
  • Lin CM, Tsai HL. Effect of annealing treatment on microstructure and properties of high-entropy FeCoNiCrCu0.5 alloy. Mater Chem Phys. 2011;128:50–56.
  • Tao WJ, Zhang WQ, Fu HM. Diffusion behavior of Cu and Ni atoms in CuCoCrFeNi high entropy alloy. Cailiao Rechuli Xuebao/Transactions Mater Heat Treat. 2017;38:34–39.
  • Rogachev AS, Vadchenko SG, Kochetov NA, et al. Structure and properties of equiatomic CoCrFeNiMn alloy fabricated by high-energy ball milling and spark plasma sintering. J Alloys Compd. 2019;805:1237–1245.
  • Dasari S, Jagetia A, Soni V, et al. Engineering transformation pathways in an Al0.3CoFeNi complex concentrated alloy leads to excellent strength–ductility combination. Mater Res Lett. 2020;8:399–407.
  • Nartu MSKKY, Alam T, Dasari S, et al. Enhanced tensile yield strength in laser additively manufactured Al0.3CoCrFeNi high entropy alloy. Materialia. 2020; 9:100522.
  • Gwalani B, Gorsse S, Choudhuri D, et al. Tensile yield strength of a single bulk Al 0.3 CoCrFeNi high entropy alloy can be tuned from 160 MPa to 1800 MPa. Scr Mater. 2019;162:18–23.
  • Petch NJ. The ductile-brittle transition in the fracture of α-iron: I. Philos Mag. 1958;3:1089–1097.
  • Gwalani B, Soni V, Lee M, et al. Optimizing the coupled effects of Hall-Petch and precipitation strengthening in a Al 0.3 CoCrFeNi high entropy alloy. Mater Des. 2017;121:254–260.
  • Annasamy M, Haghdadi N, Taylor A, et al. Static recrystallization and grain growth behaviour of Al 0.3 CoCrFeNi high entropy alloy. Mater Sci Eng A. 2019;754:282–294.
  • Hyde JM, Marquis EA, Wilford KB, et al. A sensitivity analysis of the maximum separation method for the characterisation of solute clusters. Ultramicroscopy. 2011;111:440–447.
  • Stephenson LT, Moody MP, Liddicoat P V, et al. New techniques for the analysis of fine-scaled clustering phenomena within atom probe tomography (APT) data. Microsc Microanal. 2007;13(6): 448–463.
  • Gale WF, Totemeier TC. Smithells metals reference book. Smithells Met. Ref. B. 2003.
  • Armstrong RW. Hall-Petch analysis of yield, flow and fracturing. Mater Res Soc Symp - Proc. 1995.
  • Hughes GD, Smith SD, Pande CS, et al. Hall-petch strengthening for the microhardness of twelve nanometer grain diameter electrodeposited nickel. Scr Metall. 1986;20:93–97.
  • Li JCM, Chou YT. The role of dislocations in the flow stress grain size relationships. Metall Mater Trans. 1970;1:1145–1159.
  • Cottrell AH. Theory of Brittle Fracture. Trans Met Soc AIME. 1958;212:369–374.
  • Meyers MA, Chawla KK. Mechanical behavior of materials. Cambridge: Cambridge university press; 2008.
  • Guo Z, Sha W. Quantification of precipitation hardening and evolution of precipitates. Mater Trans. 2002;43:1273–1282.
  • Singhal LK, Martin JW. The mechanism of tensile yield in an age-hardened steel containing γ′ (ordered Ni3Ti) precipitates. Acta Metall. 1968;16:947–953.