1,722
Views
13
CrossRef citations to date
0
Altmetric
Original Reports

Anharmonic effect on the thermally activated migration of {101̄2} twin interfaces in magnesium

, , &
Pages 231-238 | Received 17 Oct 2020, Published online: 27 Jan 2021

References

  • Yoo MH. Slip, twinning, and fracture in hexagonal close-packed metals. Met Trans A. 1981;12:409–418.
  • Barnett MR. Twinning and the ductility of magnesium alloys: part I: “Tension” twins. Mat Sci Eng A. 2007;464:1–7.
  • Barnett MR. Twinning and the ductility of magnesium alloys: part II. “Contraction” twins. Mat Sci Eng A. 2007;464:8–16.
  • El Kadiri H, Barrett CD, Wang J, et al. Why are {101¯2} twins profuse in magnesium? Acta Mater. 2015;85:354–361.
  • Liu Y, Li N, Arul Kumar M, et al. Experimentally quantifying critical stresses associated with basal slip and twinning in magnesium using micropillars. Acta Mater. 2017;135:411–421.
  • Spearot DE, Capolungo L, Tomé CN. Shear-driven motion of Mg {101¯2} twin boundaries via disconnection terrace nucleation, growth, and coalescence. Phys Rev Mat. 2019;3:053606.
  • Liu Y, Tang PZ, Gong MY, et al. Three-dimensional character of the deformation twin in magnesium. Nat Comm. 2019;10:1–7.
  • Wang S, Gong M, McCabe RJ, et al. Characteristic boundaries associated with three-dimensional twins in hexagonal metals. Sci Adv. 2020;6:eaaz2600.
  • Luque A, Ghazisaeidi M, Curtin WA. A new mechanism for twin growth in Mg alloys. Acta Mater. 2014;81:442–456.
  • Truhlar DG, Hase WL, Hynes JT. Current status of transition-state theory. J Phys Chem. 1983;87:2664–2682.
  • Swinburne TD, Marinica MC. Unsupervised calculation of free energy barriers in large crystalline systems. Phys Rev Lett. 2018;120:135503.
  • Wu Z, Francis MF, Curtin WA. Magnesium interatomic potential for simulating plasticity and fracture phenomena. Model Sim Mat Sci Eng. 2015;23:015004.
  • Wu Z, Curtin WA. The origins of high hardening and low ductility in magnesium. Nature. 2015;526:62–67.
  • Wu Z, Curtin WA. Intrinsic structural transitions of the pyramidal I ⟨c+a⟩ dislocation in magnesium. Scripta Mater. 2016;116:104–107.
  • Buey D, Ghazisaeidi M. Atomistic simulation of ⟨c+a⟩ screw dislocation cross-slip in Mg. Scripta Mater. 2016;117:51–54.
  • Wu Z, Curtin WA. Brittle and ductile crack-tip behavior in magnesium. Acta Mater. 2015;88:1–12.
  • Sun D, Ponga M, Bhattacharya K, et al. Proliferation of twinning in hexagonal close-packed metals: application to magnesium. J Mech Phys Sol. 2016;112:368–384.
  • Schmid E. Articles on the physics and metallography of magnesiums. Z Elektrochem Angew Phys Chem. 1931;37:447–459.
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. Albuquerque: Sandia National Labs.; 1993.
  • Henkelman G, Jónsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys. 2000;113:9978–9985.
  • Zhu T, Li J, Samanta A, et al. Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proc Nat Acad Sci. 2007;104:3031–3036.
  • Swinburne TD, Marinica MC. PAFI: projected average force integrator. https://github.com/tomswinburne/pafi, 2020.
  • Serra A, Bacon DJ, Pond RC. Dislocations in interfaces in the hcp metals—I. defects formed by absorption of crystal dislocations. Acta Mater. 1999;47:1425–1439.
  • Wang J, Hirth JP, Tomé CN. (1¯012) twinning nucleation mechanisms in hexagonal-close-packed crystal. Acta Mater. 2009;57:5521–5530.
  • Leclercq L, Capolungo L, Rodney D. Atomic-scale comparison between twin growth mechanisms in magnesium. Mat Res Lett. 2014;2:152–159.
  • Kocks UF, Argon AS, Ashby MF. Thermodynamics and kinetics of slip. Progress in Materials Science (edited by B. Chalmers, J. W. Christian and T. B. Massalski), Vol. 19. Pergamon Press,Oxford (1975).
  • Kraych A, Clouet E, Dezerald L, et al. Non-glide effects and dislocation core fields in BCC metals. npj Comp Mat. 2019;5:1–8.
  • Vitek V, Mrovec M, Bassani JL. Influence of non-glide stresses on plastic flow: from atomistic to continuum modeling. Mat Sci Eng A. 2004;365:31–37.
  • Duesbery MS. On non-glide stresses and their influence on the screw dislocation core in body-centred cubic metals I. the Peierls stress. Proc Roy Soc London A. 1984;392:145–173.
  • Barnett MR, Keshavarz Z, Beer AG, et al. Non-Schmid behaviour during secondary twinning in a polycrystalline magnesium alloy. Acta Mater. 2008;56:5–15.
  • Barrett CD, El Kadiri H, Tschopp MA. Breakdown of the Schmid law in homogeneous and heterogeneous nucleation events of slip and twinning in magnesium. J Mech Phys Sol. 2012;60:2084–2099.
  • Clouet E, Varvenne C, Jourdan T. Elastic modeling of point-defects and their interaction. Comp Mat Sci. 2018;147:49–63.
  • Wang J, Yadav SK, Hirth JP, et al. Pure-shuffle nucleation of deformation twins in hexagonal-close-packed metals. Mat Res Lett. 2013;1:126–132.
  • Ishii A, Li J, Ogata S. Shuffling-controlled versus strain-controlled deformation twinning: the case for HCP Mg twin nucleation. Int J Plast. 2016;82:32–43.
  • Liu B-Y, Wang J, Li B, et al. Twinning-like lattice reorientation without a crystallographic twinning plane. Nat Comm. 2014;5:3297.
  • Yelon A, Movaghar B, Crandall RS. Multi-excitation entropy: its role in thermodynamics and kinetics. Rep Prog Phys. 2006;69:1145.
  • Gelin S, Champagne-Ruel A, Mousseau N. Enthalpy-entropy compensation of atomic diffusion originates from softening of low frequency phonons. Nature Comm. 2020;11:3977.
  • Aghababaei R, Joshi SP. Micromechanics of tensile twinning in magnesium gleaned from molecular dynamics simulations. Acta Mater. 2014;69:326–342.
  • Fan H, El-Awady JA. Molecular dynamics simulations of orientation effects during tension, compression, and bending deformations of magnesium nanocrystals. Acta Mater. 2015;82:101006.
  • Sim GD, Kim G, Lavenstein S, et al. Anomalous hardening in magnesium driven by a size-dependent transition in deformation modes. Acta Mater. 2018;144:11–20.