5,870
Views
25
CrossRef citations to date
0
Altmetric
Original Report

A high-entropy high-temperature shape memory alloy with large and complete superelastic recovery

ORCID Icon, , , , , , & show all
Pages 263-269 | Received 12 Jan 2021, Published online: 28 Feb 2021

References

  • Ma J, Karaman I, Noebe RD. High temperature shape memory alloys. Int Mater Rev. 2010;55:257–315.
  • Jani JM, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities. Mater Des. 2014;56:1078–1113.
  • Otsuka K, Ren X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci. 2005;50:511–678.
  • Beyer J, Mulder JH. Recent developments in high temperature shape memory alloys. Trans Mater Res Soc Jpn. 1994;18B:1003–1008.
  • Koval YN. High temperature shape memory effect in some alloys and compounds. Mater Sci Forum. 2000;327-328:271–278.
  • Saghaian SM, Karaca HE, Tobe H, et al. Effects of aging on the shape memory behavior of Ni-rich Ni50.3Ti29.7Hf20 single crystals. Acta Mater. 2015;87:128–141.
  • Hsieh SF, Wu SK. A study on ternary Ti-rich TiNiZr shape memory alloys. Mater Charact. 1998;41:151–162.
  • Firstov GS, Van Humbeeck J, Koval Y. High-temperature shape memory alloys some recent developments. Mater Sci Eng A. 2004;378:2–10.
  • Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6:299–303.
  • Cantor B, Chang ITH, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375-377:213–218.
  • Tsai MH, Yeh JW. High-entropy alloys: a critical review. Mater Res Lett. 2014;2:107–123.
  • Tsai KY, Tsai MH, Yeh JW. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Mater. 2013;61:4887–4897.
  • Chen J, Zhou X, Wang W, et al. A review on fundamental of high entropy alloys with promising high–temperature properties. J Alloys Compd. 2018;760:15–30.
  • Guo W, Dmowski W, Noh JY, et al. Local atomic structure of a high-entropy alloy: an x-ray and neutron scattering study. Metall Mater Trans A. 2013;44A:1994–1997.
  • Maresca F, Curtin WA. Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900K. Acta Mater. 2020;182:235–249.
  • Firstov GS, Kosorukova TA, Koval YN, et al. High entropy shape memory alloys. Mater Today Proc. 2015;2:S499–S503.
  • Chen CH, Chen YJ. Shape memory characteristics of (TiZrHf)50Ni25Co10Cu15 high entropy shape memory alloy. Scr Mater. 2019;162:185–189.
  • Firstov GS, Kosorukova TA, Koval YN, et al. Directions for high-temperature shape memory alloys’ improvement: straight way to high-entropy materials? Shap Mem Superelasticity. 2015;1:400–407.
  • Piorunek D, Frenzel J, Jöns N, et al. Chemical complexity, microstructure and martensitic transformation in high entropy shape memory alloys. Intermetallics. 2020;122:106792.
  • Canadinc D, Trehern W, Ma J, et al. Ultra-high temperature multi-component shape memory alloys. Scr Mater. 2019;158:83–87.
  • Karaca HE, Acar E, Ded GS, et al. Microstructure and transformation related behaviors of a Ni45.3Ti29.7Hf20Cu5 high temperature shape memory alloy. Mater Sci Eng A. 2015;627:82–94.
  • Cui J, Chu YS, Famodu OO, et al. Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat Mater. 2006;5:286–290.
  • Zarnetta R, Takahashi R, Young ML, et al. Identification of quaternary shape memory alloys with near-zero thermal hysteresis and unprecedented functional stability. Adv Funct Mater. 2010;20:1917–1923.
  • Zhang Z, James RD, Müller S. Energy barriers and hysteresis in martensitic phase transformations. Acta Mater. 2009;57:4332–4352.
  • Bigelow GS, Garg A, Padula II SA, et al. Load-biased shape-memory and superelastic properties of a precipitation strengthened high-temperature Ni50.3Ti29.7Hf20 alloy. Scr Mater. 2011;64:725–728.
  • Zou Y, Maiti S, Steurer W, et al. Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Mater. 2014;65:85–97.
  • Kockar B, Atli KC, Ma J, et al. Role of severe plastic deformation on the cyclic reversibility of a Ti50.3Ni33.7Pd16 high temperature shape memory alloy. Acta Mater. 2010;58:6411–6420.
  • Karaca HE, Saghaian SM, Basaran B, et al. Compressive response of nickel-rich NiTiHf high-temperature shape memory single crystals along the [111] orientation. Scr Mater. 2011;65:577–580.