2,559
Views
10
CrossRef citations to date
0
Altmetric
Original Report

Making composite steel higher strength and higher ductility via introducing carbon diffusion strategy

, , , , , , & show all
Pages 391-397 | Received 29 Apr 2021, Published online: 26 Jul 2021

References

  • He BB, Hu B, Yen HW, et al. High dislocation density-induced large ductility in deformed and partitioned steels. Science. 2017;357:1092–1032.
  • Gao JH, Jiang SH, Zhang HR, et al. Facile route to bulk ultrafine-grain steels for high strength and ductility. Nature. 2021;590:262–267.
  • Sun WW, Wu YX, Yang SC, et al. Advanced high strength steel (AHSS) development through chemical patterning of austenite. Scr Mater. 2018;146:60–63.
  • Liu SL, Hu B, Li W, et al. Refined heterogeneous phase unit enhances ductility in quenched ultra-high strength steels. Scr Mater. 2021;194:113636.
  • Nambu S, Michiuchi M, Ishimoto Y, et al. Transition in deformation behavior of martensitic steel during large deformation under uniaxial tensile loading. Scr Mater. 2009;60(4):221–224.
  • Movahed P, Kolahgar S, Marashi SPH, et al. The effect of intercritical heat treatment temperature on the tensile properties and work hardening behavior of ferrite–martensite dual phase steel sheets. Mater Sci Eng A. 2009;518(1):1–6.
  • De Moor E, Lacroix S, Clarke AJ, et al. Effect of retained austenite stabilized via quench and partitioning on the strain hardening of martensitic steels. Metall Mater Trans A. 2008;39(11):2586–2595.
  • Ojima M, Inoue J, Nambu S, et al. Stress partitioning behavior of multilayered steels during tensile deformation measured by in situ neutron diffraction. Scr Mater. 2012;66(3–4):139–142.
  • Bouaziz O, Masse JP, Petitgand G, et al. A novel strong and ductile TWIP/martensite steel composite. Adv Eng Mater. 2016;18(1):56–59.
  • Kim JG, Baek SM, Lee HH, et al. Suppressed deformation instability in the twinning-induced plasticity steel-cored three-layer steel sheet. Acta Mater. 2018;147:304–312.
  • Gao GH, Zhang H, Gui XL, et al. Enhanced ductility and toughness in an ultrahigh-strength Mn–Si–Cr–C steel: the great potential of ultrafine filmy retained austenite. Acta Mater. 2014;76:425–433.
  • Ding R, Yao YJ, Sun BH, et al. Chemical boundary engineering: a new route toward lean, ultrastrong yet ductile steels. Sci Adv. 2020;6(13):eaay1430.
  • Seok MY, Lee JA, Lee DH, et al. Decoupling the contributions of constituent layers to the strength and ductility of a multi-layered steel. Acta Mater. 2016;121:164–172.
  • Lhuissier P, Inoue J, Koseki T. Strain field in a brittle/ductile multilayered steel composite. Scr Mater. 2011;64(10):970–973.
  • Yu WX, Liu BX, He JN, et al. Microstructure characteristics, strengthening and toughening mechanism of rolled and aged multilayer TWIP/maraging steels. Mater Sci Eng A. 2019;767:138426.
  • Koseki T, Inoue J, Nambu S. Development of multilayer steels for improved combinations of high strength and high ductility. Mater Trans. 2014;55(2):227–237.
  • Kum DW, Oyama T, Ruano OA, et al. Development of ferrous laminated composites with unique microstructures by control of carbon diffusion. Metall Trans A. 1986;17(9):1517–1521.
  • Bouaziz O, Zurob H, Chehab B, et al. Effect of chemical composition on work hardening of Fe—Mn—C TWIP steels. J Mater Sci Technol. 2011;27:707–709.
  • Caballero FG, Miller MK, Garcia-Mateo C. Carbon supersaturation of ferrite in a nanocrystalline bainitic steel. Acta Mater. 2010;58:2338–2343.
  • Fan Z, Tsakiropoulos P, Miodownik AP. A generalized law of mixtures. J Mater Sci. 1994;29(1):141–150.
  • Liu FC, Yang ZN, Zheng CL, et al. Simultaneously improving the strength and ductility of coarse-grained hadfield steel with increasing strain rate. Scr Mater. 2012;66(7):431–434.
  • Zhang FC, Chen C, Lv B, et al. Effect of pre-deformation mode on the microstructures and mechanical properties of hadfield steel. Mater Sci Eng A. 2019;743:251–258.
  • Liu S, Qian LH, Meng JY, et al. On the more persistently-enhanced strain hardening in carbon-increased Fe–Mn–C twinning-induced plasticity steel. Mater Sci Eng A. 2015;639:425–430.
  • Zambrano OA. Stacking fault energy maps of Fe–Mn–Al–C–Si steels: effect of temperature, grain size, and variations in compositions. J Eng Mater Technol. 2016;138(4):041010.
  • Yang MX, Pan Y, Yuan FP, et al. Back stress strengthening and strain hardening in gradient structure. Mater Res Lett. 2016;4(3):145–151.
  • Wu XL, Zhu YT, Lu K. Ductility and strain hardening in gradient and lamellar structured materials. Scr Mater. 2020;186:321–325.
  • Cheng Z, Zhou HF, Lu QH, et al. Extra strengthening and work hardening in gradient nanotwinned metals. Science. 2018;362:eaau1925.
  • Ashby MF. The deformation of plastically non-homogeneous materials. Philos Mag. 1970;21:399–424.
  • Liu XL, Xue QQ, Wang W, et al. Back-stress-induced strengthening and strain hardening in dual-phase steel. Materialia. 2019;7:100376.
  • Wu XL, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure. Proc Natl Acad Sci USA. 2014;111:7197–7201.