2,437
Views
9
CrossRef citations to date
0
Altmetric
Original Report

Ultralow-temperature superplasticity and its novel mechanism in ultrafine-grained Al alloys

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 475-482 | Received 10 Jun 2021, Published online: 15 Sep 2021

References

  • Nich TG, Wadsworth J, Sherby OD. Superplasticity in metals and ceramics. Cambridge: Cambridge University Press; 1997.
  • Langdon TG. Seventy-five years of superplasticity: historic developments and new opportunities. J Mater Sci. 2009;44:5998–6010.
  • Valiev R. Nanostructuring of metals by severe plastic deformation for advanced properties. Nature Mater. 2004;3:511–516.
  • Valiev RZ, Estrin Y, Horita Z, et al. Fundmentals of superior properties in bulk nanoSPD materials. Mater Res Lett. 2016;4:1–21.
  • Kaibyshev OA. Superplasticity of alloys, intermetallides and ceramics. Berlin: Springer-Verlag; 1992.
  • Kawasaki M, Langdon TG. Review: achieving superplastic properties in ultrafine-grained materials at high temperatures. J Mater Sci. 2016;51:19–32.
  • McFadden SX, Mishra RS, Valiev RZ, et al. Low-temperature superplasticity in nanostructured nickel and metal alloys. Nature. 1999;398:684–686.
  • Ovid'ko IA, Valiev RZ, Zhu YT. Review on superior strength and enhanced ductility of metallic nanomaterials. Prog Mater Sci. 2018;94:462–540.
  • Demirtas M, Purcek G. Room temperature superplaticity in fine/ultrafine grained materials subjected to severe plastic deformation, overview. Mater Trans. 2019;60:1159–1167.
  • Demirtasa M, Kawasaki M, Yanar H, et al. High temperature superplasticity and deformation behavior of naturally aged Zn-Al alloys with different phase compositions. Mater Sci Eng A. 2018;730:73–83.
  • Zhang YD, Jin S, Trimby PW, et al. Dynamic precipitation, segregation and strengthening of an Al-Zn-Mg-Cu alloy (AA7075) processed by high-pressure torsion. Acta Mater. 2019;162:19–32.
  • Valiev RZ, Zhilyaev AP, Langdon TG. Bulk nanostructured materials: fundamentals and applications. Hoboken (NJ): John Wiley & Sons, Inc.; 2013.
  • Chinh NQ, Szommer P. Mathematical description of indentation creep and its application for the determination of strain rate sensitivity. Mater Sci Eng A. 2014;611:333–336.
  • Gubicza J, El-Tahawy M, Lábár JL, et al. Evolution of microstructure and hardness during artificial aging of an ultrafine-grained Al-Zn-Mg-Zr alloy processed by high pressure torsion. J Mater Sci. 2020;55:16791–16805.
  • Charit I, Mishra RS. Low temperature superplasticity in a friction-stir-processed ultrafine grained Al-Zn-Mg-Sc alloy. Acta Mater. 2005;53:4211–4223.
  • Lee S, Watanabe K, Matsuda K, et al. Low-temperature and high-strain-rate superplasticity of ultrafine-grained A 7075 processed by high-pressure torsion. Mater Trans. 2018;59:1341–1347.
  • Liu FC, Ma ZY. Low-temperature superplasticity of friction stir processed Al–Zn–Mg–Cu alloy. Scripta Mater. 2008;58:667–670.
  • Juhász A, Chinh NQ, Tasnádi P, et al. Superplasticity of aluminium alloys grain-refined by zirconium. J Mater Sci. 1987;22:137–143.
  • Chinh NQ, Illy J, Juhasz A, et al. Mechanical Properties and superplasticity of AlZnMg alloys with copper and zirconium additions. Phys Stat Sol. 1995;149:583–599.
  • Kotov AD, Mikhaylovskaya AV, Portnoy VK. Effect of the solid-solution composition on the superplasticity characteristics of Al-Zn-Mg-Cu-Ni-Zr alloys. Phys Metal Metallogr. 2014;115:730–735.
  • Duan YI, Xu GF, Peng XY, et al. Effect of Sc and Zr additions on grain stability and superplasticity of the simple thermal-mechanical processed AlZnMg alloy sheet. Mater Sci Eng A. 2015;648:80–91.
  • Abo-Elkhier M, Soliman MS. Superplastic characteristics of fine-grained 7475 auminum alloy. J Mater Eng Perform. 2006;15:76–80.
  • Guan Z, Ren M, Zhao P, et al. Constitutive equations with varying parameters for superplastic flow behavior of Al-Zn-Mg-Zr alloy. Mater Des. 2014;54:906–913.
  • Wang XG, Li QS, Wu RR, et al. A review on superplastic formation behavior of Al alloys. Adv Mater Sci Eng. 2018. Article ID 7606140. https://doi.org/10.1155/2018/7606140
  • Pu H-P, Huang JC. Low temperature superplasticity in 8090 Al-Li alloys. Scripta Metal Mater. 1993;28:1125–1130.
  • Hsiao IC, Huang JC. Development of low temperature superplasticity in commercial 5083 Al-Mg alloys. Scripta Mater. 1999;40:697–703.
  • Park K-T, Hwang D-Y, Shin DH. Low-temperature superplastic behavior of a submicrometer-grained 5083 Al alloy fabricated by severe plastic deformation. Metall Mater Trans A. 2002;33:2859–2867.
  • Luo T, Ni DR, Xue P, et al. Low-temperature superplasticity of nugget zone of friction stir welded Al-Mg alloy joint. Mater Sci Eng A. 2018;727:177–183.
  • Ma ZY, Mishra RS. Development of ultrafine-grained microstructure and low temperature (0.48 Tm) superplasticity in friction stir processed Al–Mg–Zr. Scripta Mater. 2005;53:75–80.
  • Liu FC, Ma ZY, Chen LQ. Low-temperature superplasticity of Al-Mg-Sc alloy produced by friction stir processing. Scripta Mater. 2009;60:968–971.
  • Frost HJ, Ashby MF. Deformation-mechanism maps: the plasticity and creep of metals and ceramics. Oxford: Pergamon Press; 1982.
  • Kovács Z, Chinh NQ. Up-hill diffusion of solute atoms towards slipped grain boundaries: a possible reason of decomposition due to severe plastic deformation. Scripta Mater. 2020;188:285–289.
  • Chinh NQ, Szommer P, Horita Z, et al. Experimental evidence for grain boundary sliding in ultrafine-grained aluminum processed by severe plastic deformation. Adv Mater. 2006;18:34–39.
  • Valiev RZ, Murashkin MY, Kilmametov A, et al. Unusual super-ductility at room temperature in an ultrafine-grained aluminum alloy. J Mater Sci. 2010;45:4718–4724.
  • Chinh NQ, Valiev RZ, Sauvage X, et al. Grain boundary phenomena in an ultrafine-grained Al-Zn alloy with improved mechanical behavior for micro-devices. Adv Eng Mater. 2014;16:1000–1009.
  • Chinh NQ, Szommer P, Gubicza J, et al. Characterizing microstructural and mechanical properties of Al–Zn alloys processed by high-pressure torsion. Adv Eng Mater. 2020;22:1900672.
  • Straumal B, Valiev R, Kogtenkova O, et al. Thermal evolution and grain boundary phase transformations in severely deformed nanograined Al-Zn alloys. Acta Mater. 2008;56:6123–6131.
  • Edalati K, Horita Z, Valiev RZ. Transition from poor ductility to room-temperature superplasticity in a nanostructured aluminum alloy. Sci Rep. 2018;8:6740.
  • Gubicza J. Defect structure and properties of nanomaterials. Duxford: Woodhead Publishing; 2017.
  • Petrik MV, Kuznetsov AR, Enikeev NA, et al. Peculiarities of interactions of alloying elements with grain boundaries and the formation of segregations in Al-Mg and Al-Zn alloys. Phys Met Metallogr. 2018;119:607–612.
  • Koju RK, Mishin Y. Atomistic study of grain-boundary segregation and grain-boundary diffusion in Al-Mg alloys. Acta Mater. 2020;201:596–603.
  • Polmear IJ. Light alloys: metallurgy of the light metals. 3rd ed London: Arnold; 1995.
  • Azarniya A, Taheri AK, Taheri KK. Recent advances in ageing of 7xxx series aluminum alloys: a physical metallurgy perspective. J Alloys Compd. 2019;781:945–983.