1,512
Views
2
CrossRef citations to date
0
Altmetric
Original Reports

Oxidation difference of microstructural bands in additive manufactured titanium alloy

, , , , ORCID Icon &
Pages 6-13 | Received 15 Sep 2021, Published online: 08 Jan 2022

References

  • DebRoy T, Wei HL, Zuback JS, et al. Additive manufacturing of metallic components - process, structure and properties. Prog Mater Sci. 2018;92:112–224.
  • Wu B, Pan Z, Ding D, et al. A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement. J Manuf Process. 2018;35:127–139.
  • Oliveira JP, Santos TG, Miranda RM. Revisiting fundamental welding concepts to improve additive manufacturing: from theory to practice. Prog Mater Sci. 2020;107:100590.
  • Wang J, Lin X, Wang J, et al. Grain morphology evolution and texture characterization of wire and arc additive manufactured Ti-6Al-4V. J Alloys Compd. 2018;768:97–113.
  • Bermingham MJ, Kent D, Zhan H, et al. Controlling the microstructure and properties of wire arc additive manufactured Ti–6Al–4 V with trace boron additions. Acta Mater. 2015;91:289–303.
  • Wang J, Pan Z, Ma Y, et al. Characterization of wire arc additively manufactured titanium aluminide functionally graded material: microstructure, mechanical properties and oxidation behaviour. Mater Sci Eng A. 2018;734(SEP.12):110–119.
  • Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals. Acta Mater. 2016;117:371–392.
  • Sames WJ, List IIIFA, Pannala S, et al. The metallurgy and processing science of metal additive manufacturing. Int Mater Rev. 2016;61:315–360.
  • Wang F, Williams S, Colegrove P, et al. Microstructure and mechanical properties of wire and Arc additive manufactured Ti-6Al-4V. Metall Mater Trans A. 2013;44(2):968–977.
  • Baufeld B, Brandl E, van der Biest O. Wire based additive layer manufacturing: comparison of microstructure and mechanical properties of Ti–6Al–4 V components fabricated by laser-beam deposition and shaped metal deposition. J Mater Process Technol. 2011;211(6):1146–1158.
  • Åkerfeldt P, Antti M-L, Pederson R. Influence of microstructure on mechanical properties of laser metal wire-deposited Ti-6Al-4V. Mater Sci Eng A. 2016;674:428–437.
  • Martina F, Colegrove PA, Williams SW, et al. Microstructure of interpass rolled wire + Arc additive manufacturing Ti-6Al-4V components. Metall Mater Trans A. 2015;46(12):6103–6118.
  • Zhu Y, Tian X, Li J, et al. Microstructure evolution and layer bands of laser melting deposition Ti–6.5Al–3.5Mo–1.5Zr–0.3Si titanium alloy. J Alloys Compd. 2014;616:468–474.
  • Kobryn PA, Semiatin SL. Microstructure and texture evolution during solidification processing of Ti–6Al–4 V. J Mater Process Technol. 2003;135(2):330–339.
  • Kelly SM, Kampe SL. Microstructural evolution In laser-deposited multilayer Ti-6Al-4V builds: part I. microstructural characterization. Metall Mater Trans A. 2004;35(6):1861–1867.
  • Ho A, Zhao H, Fellowes JW, et al. On the origin of microstructural banding In Ti-6Al4 V wire-arc based high deposition rate additive manufacturing. Acta Mater. 2019;166:306–323.
  • Lin J, Guo D, Lv Y, et al. Heterogeneous microstructure evolution In Ti-6Al-4V alloy thin-wall components deposited by plasma arc additive manufacturing. Mater Des. 2018;157:200–210.
  • Wang Y, Chen R, Cheng X, et al. Effects of microstructure on fatigue crack propagation behavior In a bi-modal TC11 titanium alloy fabricated via laser additive manufacturing. J Mater Process Technol. 2019;35(2):403–408.
  • Yang Z, Liu Q, Wang Y, et al. Fabrication of multi-element alloys by twin wire arc additive manufacturing combined with In-situ alloying. Mater Res Lett. 2020;8(12):477–482.
  • Jiang H, Hirohasi M, Lu Y, et al. Effect of Nb on the high temperature oxidation of Ti–(0–50 at. %)Al. Scr Mater. 2002;46(9):639–643.
  • Lin JP, Zhao LL, Li GY, et al. Effect of Nb on oxidation behavior of high Nb containing TiAl alloys. Intermetallics. 2011;19(2):131–136.
  • Dai J, Wang L, Wu X, et al. Effects of alloying elements on the stability of TiO2 and their diffusion properties studied by first principles calculations. Mater Today Commun. 2018;17:40–45.
  • Guo W, Wang H, Peng P, et al. Effect of laser shock processing on oxidation resistance of laser additive manufactured Ti6Al4 V titanium alloy. Corros Sci. 2020;170:108655.
  • Du W, Yao Z, Zhang S, et al. The effect of B doping on the oxidation resistance of Ti6Al4 V by EBF3. Corros Sci. 2020;173:108766.
  • Xu J-Y, Shi Z-Z, Zhang Z-B, et al. Significant enhancement of high temperature oxidation resistance of pure titanium via minor addition of Nb and Si. Corros Sci. 2020;166:108430.
  • Seifert HJ, Kussmaul A, Aldinger F. Phase equilibria and diffusion paths In the Ti–Al–O–N system. J Alloys Compd. 2001;317-318:19–25.
  • Qu SJ, Tang SQ, Feng AH, et al. Microstructural evolution and high-temperature oxidation mechanisms of a titanium aluminide based alloy. Acta Mater. 2018;148:300–310.
  • Namboodhiri TKG. On the Ti-Al phase diagram. Mater Sci Eng. 1983;57(1):21–22.
  • Dai J, Zhu J, Chen C, et al. High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: A review. J Alloys Compd. 2016;685:784–798.
  • Cui Y, Aoyagi K, Koizumi Y, et al. Effect of niobium addition on tensile properties and oxidation resistance of a titanium-based alloy. Corros Sci. 2021;180:109198.
  • Lui HX, Zhang XW, Jiang YH, et al. Microstructure and high temperature oxidation resistance of In-situ synthesized TiN/Ti3Al intermetallic composite coatings on Ti6Al4 V alloy by laser cladding process. J Alloys Compd. 2016;670:268–274.
  • Li ZW, Gao W, Ying DY, et al. Improved oxidation resistance of Ti with a thermal sprayed Ti3Al(O)–Al2O3 composite coating. Scr Mater. 2003;48(12):1649–1653.
  • Wang J, Pan ZX, Ma Y, et al. Characterization of wire arc additively manufactured titanium aluminide functionally graded material: microstructure, mechanical properties and oxidation behaviour. Mater Sci Eng A. 2018;734:110–119.
  • Dear FF, Kontis P, Gault B, et al. Mechanisms of Ti3Al precipitation In hcp α-Ti. Acta Mater. 2021;212:116811.
  • Bagot PAJ, Radecka A, Magyar AP, et al. The effect of oxidation on the subsurface microstructure of a Ti-6Al-4V alloy. Scr Mater. 2018;148:24–28.