1,804
Views
2
CrossRef citations to date
0
Altmetric
Original Reports

In-situ observation of deformation twin associated sub-grain boundary formation in copper single crystal under bending

, , , , , & show all
Pages 488-495 | Received 28 Jan 2022, Published online: 14 Apr 2022

References

  • Liu XC, Zhang HW, Lu K. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel. Science. 2013;342(6156):337–340.
  • Piotrowski L, Chmielewski M, Kowalewski ZL. The dominant influence of plastic deformation induced residual stress on the barkhausen effect signal in martensitic steels. J Nondestr Eval. 2017;36(1.
  • Cao Y, Ni S, Liao X, et al. Structural evolutions of metallic materials processed by severe plastic deformation. Mater Sci Eng: R: Rep. 2018;133:1–59.
  • Valiev RZ, Islamgaliev RK, Alexandrov IV. Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci. 2000;45(2):103–189.
  • Estrin Y, Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. 2013;61(3):782–817.
  • Zhao YH, Zhu YT, Liao XZ, et al. Influence of stacking fault energy on the minimum grain size achieved in severe plastic deformation. Mater Sci Eng A. 2007;463(1-2):22–26.
  • Zhao YH, Horita Z, Langdon TG, et al. Evolution of defect structures during cold rolling of ultrafine-grained Cu and Cu–Zn alloys: Influence of stacking fault energy. Mater Sci Eng A. 2008;474(1-2):342–347.
  • Zhao YH, Liao XZ, Zhu YT, et al. Influence of stacking fault energy on nanostructure formation under high pressure torsion. Mater Sci Eng A. 2005;410-411:188–193.
  • Hughes DA, Hansen N. High angle boundaries formed by grain subdivision mechanisms. Acta Mater. 1997;45(9):3871–3886.
  • Liao XZ, Huang JY, Zhu YT, et al. Nanostructures and deformation mechanisms in a cryogenically ball-milled Al-Mg alloy. Philos Mag. 2003;83(26):3065–3075.
  • Mishra A, Kad B, Gregori F, et al. Microstructural evolution in copper subjected to severe plastic deformation: experiments and analysis. Acta Mater. 2007;55(1):13–28.
  • Wang K, Tao NR, Liu G, et al. Plastic strain-induced grain refinement at the nanometer scale in copper. Acta Mater. 2006;54(19):5281–5291.
  • Tao NR, Lu K. Nanoscale structural refinement via deformation twinning in face-centered cubic metals. Scr Mater. 2009;60(12):1039–1043.
  • Wang YB, Liao XZ, Zhao YH, et al. The role of stacking faults and twin boundaries in grain refinement of a Cu–Zn alloy processed by high-pressure torsion. Mater Sci Eng A. 2010;527(18-19):4959–4966.
  • Li YS, Tao NR, Lu K. Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures. Acta Mater. 2008;56(2):230–241.
  • Zhang HW, Hei ZK, Liu G, et al. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment. Acta Mater. 2003;51(7):1871–1881.
  • Wu X, Tao N, Hong Y, et al. Strain-induced grain refinement of cobalt during surface mechanical attrition treatment. Acta Mater. 2005;53(3):681–691.
  • Loretto MH, Clarebrough LM, Segall RL. Stacking-fault tetrahedra in deformed face-centred cubic metals. Philos Mag. 1965;11(111):459–465.
  • Zhao YH, Zhu YT, Liao XZ, et al. Tailoring stacking fault energy for high ductility and high strength in ultrafine grained Cu and its alloy. Appl Phys Lett. 2006;89(12).
  • Huang CX, Wang K, Wu SD, et al. Deformation twinning in polycrystalline copper at room temperature and low strain rate. Acta Mater. 2006;54(3):655–665.
  • Oh SH, Legros M, Kiener D, et al. In situ TEM straining of single crystal Au films on polyimide: change of deformation mechanisms at the nanoscale. Acta Mater. 2007;55(16):5558–5571.
  • Zhou H, Huang C, Sha X, et al. In-situobservation of dislocation dynamics near heterostructured interfaces. Mater Res Lett. 2019;7(9):376–382.
  • Ding Q, Fu X, Chen D, et al. Real-time nanoscale observation of deformation mechanisms in CrCoNi-based medium- to high-entropy alloys at cryogenic temperatures. Mater Today. 2019;25:21–27.
  • Jang D, Li XH, Gao, et al. Deformation mechanisms in nanotwinned metal nanopillars, Nat Nanotechnol (2012);7(9):594-601.
  • Cheng G, Yin S, Li C, et al. In-situ TEM study of dislocation interaction with twin boundary and retraction in twinned metallic nanowires. Acta Mater. 2020;196:304–312.
  • Liu B-Y, Prasad KE, Yang N, et al. In-situ quantitative TEM investigation on the dynamic evolution of individual twin boundary in magnesium under cyclic loading. Acta Mater. 2019;179:414–423.
  • Wang J, Li N, Anderoglu O, et al. Detwinning mechanisms for growth twins in face-centered cubic metals. Acta Mater. 2010;58(6):2262–2270.
  • Zhu Q, Kong L, Lu H, et al. Revealing extreme twin-boundary shear deformability in metallic nanocrystals. Sci Adv. 2021;7(36):eabe4758.
  • Zhu Q, Cao G, Wang J, et al. In situ atomistic observation of disconnection-mediated grain boundary migration. Nat Commun. 2019;10(1):156.
  • Zhu Q, Huang Q, Guang C, et al. Metallic nanocrystals with low angle grain boundary for controllable plastic reversibility. Nat Commun. 2020;11(1):3100.
  • Huang Q, Zhu Q, Chen Y, et al. Twinning-assisted dynamic adjustment of grain boundary mobility. Nat Commun. 2021;12(1):6695.
  • Legros M. In situ mechanical TEM: seeing and measuring under stress with electrons. C R Phys. 2014;15(2-3):224–240.
  • Kacher J, Zhu T, Pierron O, et al. Integrating in situ TEM experiments and atomistic simulations for defect mechanics. Curr Opin Solid State Mater Sci. 2019;23(3):117–128.
  • Wang L, Kong D, Zhang Y, et al. Mechanically driven grain boundary formation in nickel nanowires. ACS Nano. 2017;11(12):12500–12508.
  • Kiener D, Motz C, Rester M, et al. FIB damage of Cu and possible consequences for miniaturized mechanical tests. Mater Sci Eng A. 2007;459(1-2):262–272.
  • Joós B, Duesbery MS. The peierls stress of dislocations: An analytic formula. Phys Rev Lett. 1997;78(2):266–269.
  • Nabarro FRN. Fifty-year study of the peierls-nabarro stress. Mater Sci Eng A. 1997;234-236:67–76.
  • Zheng H, Wang J, Huang JY, et al. In situ visualization of birth and annihilation of grain boundaries in an Au nanocrystal. Phys Rev Lett. 2012;109(22):225501.
  • Li N, Wang J, Misra A, et al. Twinning dislocation multiplication at a coherent twin boundary. Acta Mater. 2011;59(15):5989–5996.
  • Yamakov V, Wolf D, Phillpot SR, et al. Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nat Mater. 2002;1(1):45–48.
  • Li S, Olszta M, Li L, et al. In-situ TEM observation of shear induced microstructure evolution in Cu-Nb alloy. Scr Mater. 2021;205:114214.
  • Yue Y, Liu P, Deng Q, et al. Quantitative evidence of crossover toward partial dislocation mediated plasticity in copper single crystalline nanowires. Nano Lett. 2012;12(8):4045–4049.
  • Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science. 2009;324(5925):349–352.
  • Dao M, Lu L, Shen YF, et al. Strength, strain-rate sensitivity and ductility of copper with nanoscale twins. Acta Mater. 2006;54(20):5421–5432.