1,872
Views
0
CrossRef citations to date
0
Altmetric
Original Reports

Evaluation of phase stability and diffusion kinetics in novel BCC-structured high entropy alloys

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 556-565 | Received 07 Feb 2022, Published online: 23 Apr 2022

References

  • Cantor B, Chang IT, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A-Struct. 2004;375-377:213–218.
  • Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6:299–303.
  • Yeh JW. Recent progress in high-entropy alloys. Ann Chim-Sci Mat. 2006;31:633–648.
  • Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1–93.
  • Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;112:448–511.
  • Pickering EJ, Jones NG. High-entropy alloys: a critical assessment of their founding principles and future prospects. Int Mater Rev. 2016;61:183–202.
  • Butler TM, Alfano JP, Martens RL, et al. High-temperature oxidation behavior of Al-Co-Cr-Ni-(Fe or Si) multicomponent high-entropy alloys. JOM. 2014;16:246–259.
  • Butler TM, Weaver ML. Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys. J Alloy Compd. 2016;674:229–244.
  • Dąbrowa J, Cieślak G, Stygar M, et al. Influence of Cu content on high temperature oxidation behavior of AlCoCrCuxFeNi high entropy alloys (x = 0; 0.5; 1). Intermetallics. 2017;84:52–61.
  • Wang Z, Wang C, Zhao Y-L, et al. High hardness and fatigue resistance of CoCrFeMnNi high entropy alloy films with ultrahigh-density nanotwins. Int J Plast. 2020;131:102726.
  • Brechtl J, Chen S, Lee C, et al. A review of the serrated-flow phenomenon and its role in the deformation behavior of high-entropy alloys. Metals-Basel. 2020;10(8):1101.
  • Daoud HM, Manzoni A, Wanderka N, et al. High-temperature tensile strength of Al10Co25Cr8Fe15Ni6Ti6 compositionally complex alloy (high entropy alloy). JOM. 2015;67:2271–2277.
  • Lu Y, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci Rep. 2014;4:6200.
  • Wang Q, Ma Y, Jiang B, et al. A cuboidal B2 nanoprecipitation-enhanced body-centered-cubic alloy Al0.7CoCrFe2Ni with prominent tensile properties. Scr Mater. 2016;120:85–89.
  • Manzoni AM, Singh S, Daoud HM, et al. On the path to optimizing the Al-Co-Cr-Cu-Fe-Ni-Ti high entropy alloy family for high temperature applications. Entropy . 2016;18:104.
  • Tang Z, Senkov ON, Parish CM, et al. Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization. Mater Sci Eng A-Struct. 2015;647:229–240.
  • Verma V, Tripathi A, Venkateswaran T, et al. First report on entire sets of experimentally determined interdiffusion coefficients in quaternary and quinary high-entropy alloys. J Mater Res. 2020;35(2):162–171.
  • Guruvidyathri K, Vaidya M, Murty BS. Challenges in design and development of high entropy alloys: a thermodynamic and kinetic perspective. Scripta Mat. 2020;188:37–43.
  • Dąbrowa J, Danielewski M. State-of-the-art diffusion studies in the high entropy alloys. Metals-Basel. 2020;10(3):347.
  • Divinski SV, Pokoev A, Esakkiraja N, et al. A mystery of ‘sluggish diffusion’ in high-entropy alloys: the truth or a myth? Diff Fund. 2018;17:69–104.
  • Tsai MH, Tsai KY, Tsai CW, et al. Criterion for sigma phase formation in Cr- and V-containing high-entropy alloys. Mater Res Lett. 2013;1:207–212.
  • Vaidya M, Pradeep KG, Murty BS, et al. Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. Acta Mater. 2018;146:211–224.
  • Gaertner D, Abrahams K, Kottke J, et al. Concentration-dependent atomic mobilities in FCC CoCrFeMnNi high-entropy alloys. Acta Mater. 2019;166:357–370.
  • Dąbrowa J, Kucza W, Cieślak G, et al. Interdiffusion in the FCC-structured Al-Co-Cr-Fe-Ni high entropy alloys: experimental studies and numerical simulations. J Alloy Compd. 2016;674:455–462.
  • Kucza W, Dąbrowa J, Cieślak G, et al. Studies of “sluggish diffusion” effect in Co-Cr-Fe-Mn-Ni, Co-Cr-Fe-Ni and Co-Fe-Mn-Ni high entropy alloys; determination of tracer diffusivities by combinatorial approach. J Alloy Compd. 2018;731:920–928.
  • Verma V, Tripathi A, Kulkarni KN. On interdiffusion in FeNiCoCrMn high entropy alloy. J Phase Equilibria Diffus. 2017;38:445–456.
  • Chen W, Zhang L. High-throughput determination of interdiffusion coefficients for Co-Cr-Fe-Mn-Ni high-entropy alloys. J Phase Equilibria Diffus. 2017;38:457–465.
  • Dabrowa J, Zajusz M, Kucza W, et al. Demystifying the sluggish diffusion effect in high entropy alloys. J Alloy Compd. 2019;783:193–207.
  • Senkov ON, Wilks GB, Miracle DB, et al. Refractory high-entropy alloys. Intermetallics. 2010;18:1758–1765.
  • Senkov ON, Miller JD, Miracle DB, et al. Accelerated exploration of multi-principal element alloys with solid solution phases. Nat Commun. 2015;6:6529.
  • Senkov ON, Miller JD, Miracle DB, et al. Accelerated exploration of multi-principal element alloys for structural applications. Calphad. 2015;50:32–48.
  • Tazuddin GN, Biswas K. In the quest of single phase multi-component multiprincipal high entropy alloys. J Alloy Compd. 2017;697:434–442.
  • Thermo-Calc Software TCHEA: High Entropy Alloys database version 4.1. June 2020.
  • Mehrer H, editor. Diffusion in solid metals and alloys. Berlin: Landolt–Börnstein; 1990.
  • Zajusz M, Dąbrowa J, Danielewski M. Determination of the intrinsic diffusivities from the diffusion couple experiment in multicomponent systems. Scr Mater. 2017;138:48–51.
  • Darken LS. Diffusion, mobility and their interrelation through free energy in binary systems. Trans Am Inst Min Metall Eng. 1948;175:184–201.
  • Holly K, Danielewski M. Interdiffusion and free-boundary problem for R-component (≥2) one-dimensional mixtures showing constant concentration. Phys Rev B. 1994;50:13336–13346.
  • Manning JR. Diffusion and the kirkendal shift in binary alloys. Acta Metall Sin. 1967;15:817–826.
  • Manning JR. Cross terms in the thermodynamic diffusion equations for multicomponent alloys. Metall Trans. 1970;1:499–505.
  • Manning JR. Correlation factors for diffusion in nondilute alloys. Phys Rev B. 1971;4:1111–1121.
  • Onsager L. Reciprocal relations in irreversible processes I. Phys Rev. 1931;37:405–426.
  • Onsager L. Reciprocal realtions in irreversible processes II. Phys Rev. 1931;38:2265–2279.
  • Miedema AR. A simple model for alloys II. The influence of ionicity on the stability and other physical properties of alloys. Philips Techn Rev. 1973;33:196–202.
  • Miedema AR. A simple model for alloys I. Rules for the alloying behaviour of transition metals. Philips Techn Rev. 1973;33:149–160.
  • Zhang RF, Zhang SH, He ZJ, et al. Miedema calculator: a thermodynamic platform for predicting formation enthalpies of alloys within framework of Miedema’s theory. Comput Phys Commun. 2016;209:58–69.
  • Tsai KY, Tsai MH, Yeh JW. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 2013;61:4887–4897.
  • Vaidya M, Trubel S, Murty BS, et al. Ni tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. J Alloy Compd. 2016;688:994–1001.
  • Zhang Y, Zhou YJ, Lin JP, et al. Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater. 2008;10:534–538.
  • Lindwall G, Frisk K. Assessment and evaluation of mobilities for diffusion in the bcc Cr-V-Fe system. J Phase Equilib Diff. 2009;30(4):323–333.
  • Kunitake T. The diffusion in the iron-chromium alloy. J Jpn I Met Mater. 1961;25(11):698–702.
  • Yi C, Cheng L, Yunlong Z, editors. Assessment of atomic mobility for the Bcc phase of the Ti-Al-Mo system. IOP Conf. Ser.: Mater. Sci. Eng.; 2017; Changsha (China).
  • Wu Q, Xu G, Chang H, et al. Assessment of diffusion mobility for bcc phase of Ti–Al–Ni ternary system. Calphad. 2020;71:102203.
  • Rohrberg D, Spitzer K-H, Dörrer L, et al. Host atom diffusion in ternary Fe-Cr-Al alloys. Metal Mater Trans A. 2014;45(1):269–279.