1,406
Views
2
CrossRef citations to date
0
Altmetric
Original Reports

Cu Atoms-assisted rapid fabrication of graphene/Al composites with tailored strain-delocalization effect by spark plasma sintering

, , , &
Pages 567-574 | Received 04 Feb 2022, Published online: 27 Apr 2022

References

  • Garg P, Jamwal A, Kumar D, et al. Advance research progresses in aluminium matrix composites: manufacturing & applications. J Mater Res Technol. 2019;8(5):4924–4939.
  • Li Z, Guo Q, Li ZQ, et al. Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure. Nano Lett. 2015;15(12):8077–8083.
  • Tjong SC. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater Sci Eng R Rep. 2013;74(10):281–350.
  • Zhang X, Zhao NQ, He CN. The superior mechanical and physical properties of nanocarbon reinforced bulk composites achieved by architecture design-A review. Prog Mater Sci. 2020;113:100672.
  • Yang M, Liu Y, Fan TX, et al. Metal-graphene interfaces in epitaxial and bulk systems: a review. Prog Mater Sci. 2020;110:100652.
  • Yang LZ, Zhou BZ, Ma LS, et al. Architectured interfacial interlocking structure for enhancing mechanical properties of Al matrix composites reinforced with graphene nanosheets. Carbon N Y. 2021;183:685–701.
  • Xu R, Tan ZQ, Xiong DB, et al. Balanced strength and ductility in CNT/Al composites achieved by flake powder metallurgy via shift-speed ball milling. Compos A: Appl Sci Manuf. 2017;96:57–66.
  • Yang M, Weng L, Zhu HX, et al. Simultaneously enhancing the strength, ductility and conductivity of copper matrix composites with graphene nanoribbons. Carbon N Y. 2017;118:250–260.
  • Han TL, Wang FC, Li JJ, et al. Simultaneously enhanced strength and ductility of Al matrix composites through the introduction of intragranular nano-sized graphene nanoplates. Compos Part B-Eng. 2021;212:108700.
  • Teixeira JD, Bourgeois L, Sinclair CW, et al. The effect of shear-resistant, plate-shaped precipitates on the work hardening of Al alloys: towards a prediction of the strength-elongation correlation. Acta Mater. 2009;57(20):6075–6089.
  • Santos-Güemes R, Bellón B, Esteban-Manzanares G, et al. Multiscale modelling of precipitation hardening in Al-Cu alloys: dislocation dynamics simulations and experimental validation. Acta Mater. 2020;188:475–485.
  • Bartolucci SF, Paras J, Rafiee MA, et al. Graphene-aluminum nanocomposites. Mat Sci Eng A. 2011;528(27):7933–7937.
  • Zhang X, Shi CS, Liu EZ, et al. Effect of interface structure on the mechanical properties of graphene nanosheets reinforced copper matrix composites. ACS Appl Mater Inter. 2018;10(43):37586–37601.
  • Gao YH, Yang C, Zhang JY, et al. Stabilizing nanoprecipitates in Al-Cu alloys for creep resistance at 300°C. Mater Res Lett. 2019;7(1):18–25.
  • Gao YH, Guan PF, Su R, et al. Segregation-sandwiched stable interface suffocates nanoprecipitate coarsening to elevate creep resistance. Mater Res Lett. 2020;8(12):446–453.
  • Rong XD, Zhang X, Zhao DD, et al. In-situ Al2O3-Al interface contribution towards the strength-ductility synergy of Al-CuO composite fabricated by solid-state reactive sintering. Scr Mater. 2021;198:113825.
  • Wang FC, Li JJ, Shi CS, et al. Orientation relationships and interface structure in MgAl2O4 and MgAlB4 co-reinforced Al matrix composites. ACS Appl Mater Inter. 2019;11(45):42790–42800.
  • Milligan B, Ma D, Allard L, et al. Crystallographic orientation-dependent strain hardening in a precipitation-strengthened Al-Cu alloy. Acta Mater. 2021;205:116577.
  • Shao PZ, Chen GQ, Ju BY, et al. Effect of hot extrusion temperature on graphene nanoplatelets reinforced Al6061 composite fabricated by pressure infiltration method. Carbon N Y. 2020;162:455–464.
  • Shao PZ, Yang WS, Zhang Q, et al. Microstructure and tensile properties of 5083 Al matrix composites reinforced with graphene oxide and graphene nanoplates prepared by pressure infiltration method. Compos A: Appl Sci Manuf. 2018;109:151–162.
  • Han TL, Liu EZ, Li JJ, et al. A bottom-up strategy toward metal nano-particles modified graphene nanoplates for fabricating aluminum matrix composites and interface study. J Mater Sci Technol. 2020;46:21–32.
  • Li HY, Chen WG, Dong LL, et al. Interfacial bonding mechanism and annealing effect on Cu-Al joint produced by solid-liquid compound casting. J Mater Process Tech. 2018;252:795–803.
  • Queudet H, Lemonnier S, Barraud E, et al. One-step consolidation and precipitation hardening of an ultrafine-grained Al-Zn-Mg alloy powder by spark plasma sintering. Mat Sci Eng A. 2017;685:227–234.
  • Shi HL, Gan WM, Esling C, et al. Elastic strain induced abnormal grain growth in graphene nanosheets (GNSs) reinforced copper (Cu) matrix composites. Acta Mater. 2020;200:338–350.
  • Liu X, Zhao QL, Jiang QC. Effects of cooling rate and TiC nanoparticles on the microstructure and tensile properties of an Al-Cu cast alloy. Mat Sci Eng A. 2020;790:139737.
  • Han TL, Wang FC, Li JJ, et al. Effect of GNPs on microstructures and mechanical properties of GNPs/Al-Cu composites with different heat treatment status. J Mater Sci Technol. 2021;92:1–10.
  • Jiang YY, Tan ZQ, Xu R, et al. Tailoring the structure and mechanical properties of graphene nanosheet/aluminum composites by flake powder metallurgy via shift-speed ball milling. Compos A: Appl Sci Manuf. 2018;111:73–82.
  • Pu BW, Sha JW, Liu EZ, et al. Synergistic effect of Cu on laminated graphene nanosheets/AlCu composites with enhanced mechanical properties. Mat Sci Eng A. 2019;742:201–210.
  • El-Ghazaly A, Anis G, Salem HG. Effect of graphene addition on the mechanical and tribological behavior of nanostructured AA2124 self-lubricating metal matrix composite. Compos A: Appl Sci Manuf. 2017;95:325–336.
  • Wu GH, Yu ZH, Jiang LT, et al. A novel method for preparing graphene nanosheets/Al composites by accumulative extrusion-bonding process. Carbon N Y. 2019;152:932–945.
  • Yu ZH, Yang WS, Zhou C, et al. Effect of ball milling time on graphene nanosheets reinforced Al6063 composite fabricated by pressure infiltration method. Carbon N Y. 2019;141:25–39.
  • Liu G, Zhao NQ, Shi CS, et al. In-situ synthesis of graphene decorated with nickel nanoparticles for fabricating reinforced 6061Al matrix composites. Mat Sci Eng A. 2017;699:185–193.
  • Yang HB, Tian S, Gao T, et al. High-temperature mechanical properties of 2024 Al matrix nanocomposite reinforced by TiC network architecture. Mat Sci Eng A. 2019;763:138121.
  • Roy U, Zhou M. A computational framework for predicting the fracture toughness of metals as function of microstructure. J Mech Phys Solids. 2020;142:103955.
  • Tan Z, Wang L, Xue YF, et al. A multiple grain size distributed Al-based composite consist of amorphous/nanocrystalline, submicron grain and micron grain fabricated through spark plasma sintering. J Alloy Compd. 2018;737:308–316.
  • Wu H, Fan GH, Huang M, et al. Fracture behavior and strain evolution of laminated composites. Compos Struct. 2017;163:123–128.
  • Zhang X, Shi CS, Liu EZ, et al. Achieving high strength and high ductility in metal matrix composites reinforced with a discontinuous three-dimensional graphene-like network. Nanoscale. 2017;9(33):11929–11938.