1,727
Views
4
CrossRef citations to date
0
Altmetric
Original reports

Rapid assessment of interfacial stabilization mechanisms of metastable precipitates to accelerate high-temperature Al-alloy development

, , , , ORCID Icon, ORCID Icon & show all
Pages 771-779 | Received 08 Jun 2022, Published online: 30 Jul 2022

References

  • Martin JH, Yahata BD, Hundley JM, et al. 3D printing of high-strength aluminium alloys. Nature. 2017;549:365–369.
  • Pollock TM. Alloy design for aircraft engines. Nat Mater. 2016;15:809–815.
  • Gerold V. Dislocations in solids. edited by FRN Nabarro 4, 219 (1979).
  • Basinski S, Basinski Z. Dislocations in solids. Amsterdam: Plastic Deformation and Work Hardening, North-Holland; 261-362, 1979.
  • Cann JL, De Luca A, Dunand DC, et al. Sustainability through alloy design: challenges and opportunities. Prog Mater Sci. 2021;117:100722.
  • Vecchio KS, Dippo OF, Kaufmann KR, et al. High-throughput rapid experimental alloy development (HT-READ). Acta Mater. 2021;221:117352.
  • van Dalen ME, Karnesky RA, Cabotaje JR, et al. Erbium and ytterbium solubilities and diffusivities in aluminum as determined by nanoscale characterization of precipitates. Acta Mater. 2009;57:4081–4089.
  • Krug ME, Dunand DC, Seidman DN. Composition profiles within Al3Li and Al3Sc∕Al3Li nanoscale precipitates in aluminum. Appl Phys Lett. 2008;92:124107.
  • Karnesky RA, van Dalen ME, Dunand DC, et al. Effects of substituting rare-earth elements for scandium in a precipitation-strengthened Al–0.08at. %Sc alloy. Scr Mater. 2006;55:437–440.
  • Davis JR. Aluminum and aluminum alloys. In: Alloying: understanding the basics. ASM International; 2001. p. 351–416. doi: 10.1361/autb2001p351
  • Milligan B, Ma D, Allard L, et al. Crystallographic orientation-dependent strain hardening in a precipitation-strengthened Al-Cu alloy. Acta Mater. 2021;205:116577.
  • Chen Y, Zhang Z, Chen Z, et al. The enhanced theta-prime (θ′) precipitation in an Al-Cu alloy with trace Au additions. Acta Mater. 2017;125:340–350.
  • Shyam A, Roy S, Shin D, et al. Elevated temperature microstructural stability in cast AlCuMnZr alloys through solute segregation. Mater Sci Eng A. 2019;765:138279.
  • Bahl S, Hu X, Sisco K, et al. Influence of copper content on the high temperature tensile and low cycle fatigue behavior of cast Al-Cu-Mn-Zr alloys. Int J Fatigue. 2020;140:105836.
  • Peng J, Bahl S, Shyam A, et al. Solute-vacancy clustering in aluminum. Acta Mater. 2020;196:747–758.
  • Poplawsky JD, Milligan BK, Allard LF, et al. The synergistic role of Mn and Zr/Ti in producing θ′/L12 co-precipitates in Al-Cu alloys. Acta Mater. 2020;194:577–586.
  • Gao Y, Kuang J, Liu G, et al. Effect of minor Sc and Fe co-addition on the microstructure and mechanical properties of Al-Cu alloys during homogenization treatment. Mater Sci Eng A. 2019;746:11–26.
  • Gao Y, Liu G, Sun J. Recent progress in high-temperature resistant aluminum-based alloys: microstructural design and precipitation strategy. Acta Metall Sin. 2020;57:129–149.
  • Gao YH, Cao LF, Kuang J, et al. Si-mediated reassembly of interfacially segregated Sc atoms in an Al–Cu–Sc alloy exposed to high-temperature creep. J Alloys Compd. 2020;845:156266.
  • Gao YH, Cao LF, Kuang J, et al. Solute repositioning to tune the multiple microalloying effects in an Al–Cu alloy with minor Sc. Fe and Si Addition. Mater Sci Eng A. 2021;803:140509.
  • Cozar R, Pineau A. Morphology of y’ and y” precipitates and thermal stability of inconel 718 type alloys. Metall Trans. 1973;4:47–59.
  • Mukhopadhyay S, Sriram H, Zenk CH, et al. Creep behavior of compact γ′-γ ″coprecipitation strengthened IN718-variant superalloy. Metals (Basel). 2021;11:1897.
  • Shi R, McAllister DP, Zhou N, et al. Growth behavior of γ'/γ''coprecipitates in Ni-Base superalloys. Acta Mater. 2019;164:220–236.
  • Bahl S, Xiong L, Allard LF, et al. Aging behavior and strengthening mechanisms of coarsening resistant metastable θ'precipitates in an Al–Cu alloy. Mater Des. 2021;198:109378.
  • Bahl S, Hu X, Hoar E, et al. Effect of copper content on the tensile elongation of Al–Cu–Mn–Zr alloys: experiments and finite element simulations. Mater Sci Eng A. 2020;772:138801.
  • Samolyuk GD, Eisenbach M, Shin D, et al. Equilibrium solute segregation to matrix-θ′ precipitate interfaces in Al-Cu alloys from first principles. Phys Rev Mater. 2020;4:073801.
  • Lambeets SV, Kautz EJ, Wirth MG, et al. Nanoscale perspectives of metal degradation via In-situ atom probe tomography. Top Catal. 2020;63:1606–1622.
  • Kautz EJ, Gwalani B, Lambeets SV, et al. Rapid assessment of structural and compositional changes during early stages of zirconium alloy oxidation. npj Mater Degrad. 2020;4:29.
  • Kautz EJ, Lambeets SV, Perea DE, et al. Element redistributions during early stages of oxidation in a Ni38Cr22Fe20Mn10Co10 multi-principal element alloy. Scr Mater. 2021;194:113609.
  • Banhart J, Chen Y-S, Guo Q, et al. Direct ageing experiments on nanometre-scale aluminium alloy samples. Acta Mater. 2022: 117848.
  • Dumitraschkewitz P, Uggowitzer PJ, Gerstl SS, et al. Size-dependent diffusion controls natural aging in aluminium alloys. Nat Commun. 2019;10:1–6.
  • Bourgeois L, Zhang Y, Zhang Z, et al. Transforming solid-state precipitates via excess vacancies. Nat Commun. 2020;11:1–10.
  • Li Y, Li H, Katgerman L, et al. Recent advances in hot tearing during casting of aluminium alloys. Prog Mater Sci. 2021;117:100741.
  • Rakhmonov JU, Bahl S, Shyam A, et al. Cavitation-resistant intergranular precipitates enhance creep performance of θ′-strengthened Al-Cu based alloys. Acta Mater. 2022;228:117788.
  • Schneider CA, Rasband WS, Eliceiri KW. Nih image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–675.
  • Wang J, Shin S, Nobakht AY, et al. Structural deformation and transformation of θ′-Al2Cu precipitate in Al matrix via interfacial diffusion. Comput Mater Sci. 2019;156:111–120.
  • Liu H, Gao Y, Qi L, et al. Phase-field simulation of orowan strengthening by coherent precipitate plates in an aluminum alloy. Metall Mater Trans A. 2015;46:3287–3301.
  • Liu H, Papadimitriou I, Lin F, et al. Precipitation during high temperature aging of Al−Cu alloys: A multiscale analysis based on first principles calculations. Acta Mater. 2019;167:121–135.