2,087
Views
3
CrossRef citations to date
0
Altmetric
Original Reports

Moderating strain hardening rate to produce high ductility and high strength in a medium carbon TRIP steel

, &
Pages 69-75 | Received 16 May 2022, Published online: 22 Sep 2022

References

  • Kong HJ, Yang T, Chen R, et al. Breaking the strength-ductility paradox in advanced nanostructured Fe-based alloys through combined Cu and Mn additions. Scripta Mater. 2020;186:213–218.
  • Wu XL, Zhu YT, Lu K. Ductility and strain hardening in gradient and lamellar structured materials. Scripta Mater. 2020;186:321–325.
  • Zhao YH, Bingert JF, Liao XZ, et al. Simultaneously increasing the ductility and strength of ultra-fine-grained pure copper. Adv Mater. 2006;18:2949–2953.
  • Ovid’ko IA, Valiev RZ, Zhu YT. Review on superior strength and enhanced ductility of metallic nanomaterials. Prog Mater Sci. 2018;94:462–540.
  • Zhao YH, Liao XZ, Cheng S, et al. Simultaneously increasing the ductility and strength of nanostructured alloys. Adv Mater. 2006;18:2280–2283.
  • Luo ZC, Huang MX. The role of interstitial carbon atoms on the strain-hardening rate of twinning-induced plasticity steels. Scripta Mater. 2020;178:264–268.
  • Niu MC, Yang K, Luan JH, et al. Cu-assisted austenite reversion and enhanced TRIP effect in maraging stainless steels. J Mater Sci Technol. 2022;104:52–58.
  • Yang Z, Jiang F, Wang Y, et al. Making composite steel higher strength and higher ductility via introducing carbon diffusion strategy. Mater Res Let. 2021;9:391–397.
  • Wu XL, Jiang P, Chen L, et al. Synergetic strengthening by gradient structure. Mater Res Let. 2014;2:185–191.
  • Cheng Z, Zhou H, Lu Q, et al. Extra strengthening and work hardening in gradient nanotwinned metals. Science. 2018;362:eaau1925.
  • Park JM, Yang DC, Kim HJ, et al. Ultra-strong and strain-hardenable ultrafine-grained medium-entropy alloy via enhanced grain-boundary strengthening. Mater Res Let. 2021;9:315–321.
  • Meyers M, Chawla K. Mechanical behavior of materials. 2nd ed. Cambridge University Press; 2009. p. 177.
  • Ma E, Zhu T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals. Mater Today. 2017;20:323–331.
  • Zhu YT, Ameyama K, Anderson PM, et al. Heterostructured materials: superior properties from hetero-zone interaction. Mater Res Lett. 2021;9:1–30.
  • Zhang J, Fu Y, Wu B, et al. Hierarchical {332}<113 >twinning in a metastable β Ti-alloy showing tolerance to strain localization. Mater Res Lett. 2020;8:247–253.
  • Sun F, Zhang JY, Marteleur M, et al. Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects. Acta Mater. 2013;61:6406–6417.
  • Qian B, Lilensten L, Zhang J, et al. On the transformation pathway in TRIP/TWIP Ti–12Mo alloy. Mater Sci Eng A. 2021;822:141672.
  • Ennis BL, Jimenez-Melero E, Atzema EH, et al. Metastable austenite driven work-hardening behaviour in a TRIP-assisted dual phase steel. Int J Plast. 2017;88:126–139.
  • Tan X, Xu Y, Yang X, et al. Microstructure-properties relationship in a one-step quenched and partitioned steel. Mater Sci Eng A. 2014;589:101–111.
  • Dyson D, Holmes B. Effect of alloying additions on the lattice parameter of austenite. J Iron Steel Inst. 1970;208:469–474.
  • Wang J, Wang Z, Wang X, et al. Strengthening effect of nanoscale precipitation and transformation induced plasticity in a hot rolled copper-containing ferrite-based lightweight steel. Scripta Mater. 2017;129:25–29.
  • Dong XX, Shen YF, Yin TW. Strengthening a medium-carbon steel to 2800 MPa by tailoring nanosized precipitates and the phase ratio. Mater Sci Eng A. 2019;759:725–735.
  • Lee YK, Shin HC, Jang YC, et al. Effect of isothermal transformation temperature on amount of retained austenite and its thermal stability in a bainitic Fe-3%Si-0.45%C-X steel. Scripta Mater. 2002;47:805–809.
  • Dong XX, Shen YF, Jia N, et al. Improving mechanical properties and retained-austenite stability of a medium carbon Q&P steel by adjusting phase ratio. Mater Sci Eng A. 2022;833:142580.
  • Peng F, Xu Y, Gu X, et al. Microstructure characterization and mechanical behavior analysis in a high strength steel with different proportions of constituent phases. Mater Sci Eng A. 2018;734:398–407.
  • Grajcar A, Skowronek A, Radwański K. Mechanical behavior and stability of dispersed retained austenite in thermomechanically rolled and isothermally-treated TRIP-aided multiphase steel. Mater Sci Eng A. 2022;830:142300.
  • Xie ZJ, Liu ZF, Misra RDK, et al. Retained austenite stabilisation in low carbon high silicon steel during isothermal holding. Mater Sci Technol. 2018;35:45–54.
  • Zhou Y, Hojo T, Koyama M, et al. Effect of austempering treatment on the microstructure and mechanical properties of 0.4C-1.5Si-1.5Mn TRIP-aided bainitic ferrite steel. Mater Sci Eng A. 2021;819:141479.
  • Gu XL, Xu YB, Wang X, et al. Austenite formation and mechanical behavior of a novel TRIP- assisted steel with ferrite/martensite initial structure. Mater Sci Eng A. 2020;803:140468.
  • Gu XL, Xu YB, Peng F, et al. Role of martensite/austenite constituents in novel ultra-high strength TRIP-assisted steels subjected to non-isothermal annealing. Mater Sci Eng A. 2019;754:318–329.
  • Liu N, Zhang X, Ding J, et al. Microstructure and mechanical properties of nanobainitic steel subjected to multiple isothermal heat treatments. J Iron Steel Res Int. 2018;25:1062–1067.
  • Zhou SB, Hu F, Zhou W, et al. Effect of retained austenite on impact toughness and fracture behavior of medium carbon submicron-structured bainitic steel. J Mater Res Techol. 2021;14:1021–1034.
  • Varshney A, Mondal K, Sangal S. Cold work induced stability of retained austenite at elevated temperature in a medium carbon high silicon steel. Mater Sci Eng A. 2022;832:142455.
  • Chen ZY, Qi JJ, Liu HQ, et al. Bainitic transformation and mechanical properties of low-carbon high-strength bainitic steels with Mo addition. J Mater Eng Perform. 2020;29:2428–2439.
  • Tang ZY, Huang JN, Ding H, et al. Austenite stability and mechanical properties of a low-alloyed ECAPed TRIP-aided steel. Mater Sci Eng A. 2018;724:95–102.
  • Sugimoto KI, Kobayashi M, Hashimoto SI. Ductility and strain-induced transformation in a high-strength transformation induced plasticity-aided dual-phase steel. Metall Trans A. 1992;23:3085–3091.
  • Sugimoto K, Tsunezawa M, Hojo T, et al. Ductility of 0.1-0.6C-1.5Si-1.5Mn ultra high-strength TRIP-aided sheet steels with bainitic ferrite matrix. ISIJ Int. 2004;44:1608–1614.
  • Luo J, Mei Z, Tian W, et al. Diminishing of work hardening in electroformed polycrystalline copper with nano-sized and uf-sized twins. Mater Sci Eng A. 2006;441:282–290.