2,010
Views
1
CrossRef citations to date
0
Altmetric
Original Reports

High entropy oxide (Co,Cu,Mg,Ni,Zn)O exhibits grain size dependent room temperature deformation

, , ORCID Icon, &
Pages 196-204 | Received 28 Jun 2022, Published online: 26 Oct 2022

References

  • Rost CM, Sachet E, Borman T, et al. Entropy-stabilized oxides. Nat Commun. 2015;6:8485.
  • Dupuy AD, Wang X, Schoenung JM. Entropic phase transformation in nanocrystalline high entropy oxides. Mater Res Lett. 2019;7:60–67.
  • Dupuy AD, Chellali MR, Hahn H, et al. Multiscale phase homogeneity in bulk nanocrystalline high entropy oxides. J Eur Ceram Soc. 2021;41:4850–4858.
  • Sarkar A, Velasco L, Wang D, et al. High entropy oxides for reversible energy storage. Nat Commun. 2018;9:3400.
  • Chen H, Fu J, Zhang P, et al. Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with high-temperature stability. J Mater Chem A. 2018;6:11129–11133.
  • Braun JL, Rost CM, Lim M, et al. Charge-induced disorder controls the thermal conductivity of entropy-stabilized oxides. Adv Mater. 2018;30:1805004.
  • Csanádi T, Castle E, Reece MJ, et al. Strength enhancement and slip behaviour of high-entropy carbide grains during micro-compression. Sci Rep. 2019;9:10200.
  • Gild J, Braun J, Kaufmann K, et al. A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2. J Materiomics. 2019;5:337–343.
  • Qin M, Yan Q, Wang H, et al. High-entropy monoborides: towards superhard materials. Scr Mater. 2020;189:101–105.
  • Desissa TD, Meja M, Andoshe D, et al. Synthesis and characterizations of (Mg, Co, Ni, Cu, Zn)O high-entropy oxides. SN Appl Sci. 2021;3:733.
  • Hong W, Chen F, Shen Q, et al. Microstructural evolution and mechanical properties of (Mg,Co,Ni,Cu,Zn)O high-entropy ceramics. J Am Ceram Soc. 2019;102:2228–2237.
  • Pitike KC, Marquez-Rossy AE, Flores-Betancourt A, et al. On the elastic anisotropy of the entropy-stabilized oxide (Mg, Co, Ni, Cu, Zn)O compound. J Appl Phys. 2020;128:015101.
  • Oshima Y, Nakamura A, Matsunaga K. Extraordinary plasticity of an inorganic semiconductor in darkness. Science. 2018;360:772–774.
  • Sun B, Haunschild G, Polanco C, et al. Dislocation-induced thermal transport anisotropy in single-crystal group-III nitride films. Nat Mater. 2019;18:136–140.
  • Sun L, Marrocchelli D, Yildiz B. Edge dislocation slows down oxide ion diffusion in doped CeO2 by segregation of charged defects. Nat Commun. 2015;6:6294.
  • Armstrong MD, Lan K-W, Guo Y, et al. Dislocation-mediated conductivity in oxides: progress, challenges, and opportunities. ACS Nano. 2021;15:9211–9221.
  • Porz L, Klomp A J, Fang X, et al. Dislocation-toughened ceramics. Mater Horiz. 2021;8:1528–1537.
  • Appel F, Bethge H, Messerschmidt U. Dislocation motion and multiplication at the deformation of MgO single crystals in the high voltage electron microscope. Physica Status Solidi A. 1977;42:61–71.
  • Foitzik A, Skrotzki W, Haasen P. Correlation between microstructure, dislocation dissociation and plasticanisotropy in ionic crystals. Mater Sci Eng A. 1989;113:399–407.
  • Amodeo J, Merkel S, Tromas C, et al. Dislocations and plastic deformation in MgO crystals: a review. Crystals (Basel). 2018;8:240.
  • Messerschmidt U. Dislocation dynamics during plastic deformation [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010 [cited 2022 Mar 21]. Available from: http://link.springer.com/10.1007978-3-642-03177-9.
  • Ryou H, Drazin JW, Wahl KJ, et al. Below the Hall–Petch limit in nanocrystalline ceramics. ACS Nano. 2018;12:3083–3094.
  • Huang L, Bonifacio C, Song D, et al. Investigation into the microstructure evolution caused by nanoscratch-induced room temperature deformation in M-plane sapphire. Acta Mater. 2011;59:5181–5193.
  • Huang L, Yao W, Mukherjee AK, et al. Improved mechanical behavior and plastic deformation capability of ultrafine grain alumina ceramics. J Am Ceram Soc. 2012;95:379–385.
  • Beake BD, Harris AJ, Liskiewicz TW. Review of recent progress in nanoscratch testing. Tribol – Mater Surf Interfaces. 2013;7:87–96.
  • Li C, Zhang Q, Zhang Y, et al. Nanoindentation and nanoscratch tests of YAG single crystals: an investigation into mechanical properties, surface formation characteristic, and theoretical model of edge-breaking size. Ceram Int. 2020;46:3382–3393.
  • Ham RK. The determination of dislocation densities in thin films. Philos Mag. 1961;6:1183–1184.
  • Meng Y, Ju X, Yang X. The measurement of the dislocation density using TEM. Mater Charact. 2021;175:111065.
  • McGee TD. Grain boundaries in ceramic materials. In: Otte HM, Locke SR, editors. Materials science research. Boston, MA: Springer US; 1965. p. 3–32.
  • Zhang R, Zhao S, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy. Nature. 2020;581:283–287.
  • Savage MF, Neeraj T, Mills MJ. Observations of room-temperature creep recovery in titanium alloys. Metall Mater Trans A. 2002;33:891–898.
  • Neeraj T, Mills MJ. Short-range order (SRO) and its effect on the primary creep behavior of a Ti–6wt.%Al alloy. Mater Sci Eng A. 2001;319–321:415–419.
  • Messerschmidt U, Nishino Y, Imura T, et al. X-ray topographic in-situ observation of slip band propagation in MgO single crystals. Physica Status Solidi A. 1983;76:277–284.
  • Höfling M, Trapp M, Porz L, et al. Large plastic deformability of bulk ferroelectric KNbO3 single crystals. J Eur Ceram Soc. 2021;41:4098–4107.
  • Gerold V, Karnthaler HP. On the origin of planar slip in f.c.c. alloys. Acta Metall. 1989;37:2177–2183.
  • Hong SI, Laird C. Mechanisms of slip mode modification in F.C.C. solid solutions. Acta Metall Mater. 1990;38:1581–1594.
  • Lei Z, Liu X, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature. 2018;563:546–550.
  • Washburn J, Cass T. Dislocation dipoles in MgO. J Phys Colloques. 1966;27:C3-168–C3-177.
  • Appel F, Bartsch M, Messerschmidt U, et al. Dislocation motion and plasticity in MgO single crystals. Physica Status Solidi A. 1984;83:179–194.
  • Hüther W, Reppich B. Dislocation structure during creep of MgO single crystals. Philos Mag. 1973;28:363–371.
  • Ikuhara Y. Oxide ceramics with high density dislocations and their properties. Mater Trans. 2009;50:1626–1632.
  • Albanese-Kotar NF, Mikkola DE. Dissolution of comminuted magnesium oxide as affected by the density of dislocations introduced by various comminution methods. Mater Sci Eng. 1987;91:233–240.
  • Crookes RG, März B, Wu H. Ductile deformation in alumina ceramics under quasi-static to dynamic contact impact. Mater Des. 2020;187:108360.
  • Qi L, Chrzan DC. Tuning ideal tensile strengths and intrinsic ductility of bcc refractory alloys. Phys Rev Lett. 2014;112:115503.
  • Rost CM, Rak Z, Brenner DW, et al. Local structure of the MgxNixCoxCuxZnxO(x=0.2) entropy-stabilized oxide: An EXAFS study. J Am Ceram Soc. 2017;100:2732–2738.
  • Berardan D, Meena AK, Franger S, et al. Controlled Jahn-Teller distortion in (MgCoNiCuZn)O-based high entropy oxides. J Alloys Compd. 2017;704:693–700.
  • Rák Z, Maria J-P, Brenner DW. Evidence for Jahn-Teller compression in the (Mg, Co, Ni, Cu, Zn)O entropy-stabilized oxide: a DFT study. Mater Lett. 2018;217:300–303.
  • Chaim R. Percolative composite model for prediction of the properties of nanocrystalline materials. J Mater Res. 1997;12:1828–1836.
  • Ehre D, Chaim R. Abnormal Hall–Petch behavior in nanocrystalline MgO ceramic. J Mater Sci. 2008;43:6139–6143.
  • Ratzker B, Wagner A, Sokol M, et al. Deformation in nanocrystalline ceramics: a microstructural study of MgAl2O4. Acta Mater. 2020;183:137–144.