1,722
Views
1
CrossRef citations to date
0
Altmetric
Original Reports

Understanding the creep property of heat-resistant Al alloy by analyzing eutectic phase/matrix interface structures

, , , , , , & show all
Pages 205-212 | Received 25 Jul 2022, Published online: 26 Oct 2022

References

  • Pandey P, Makineni SK, Gault B, et al. On the origin of a remarkable increase in the strength and stability of an Al rich Al-Ni eutectic alloy by Zr addition. Acta Mater 2019;170:205–217.
  • Wang LY, Ye B, Bai Y, et al. Effect of Zr and Sc micro-additions on the microstructure and mechanical properties of as-cast Al-5Ce alloy. Mater Sci Eng A. 2021;822:141654.
  • Tiwary CS, Pandey P, Sarkar S, et al. Five decades of research on the development of eutectic as engineering materials. Prog Mater Sci 2021;9:100793.
  • Du Y, Chang YA, Huang B, et al. Diffusion coefficients of some solutes in fcc and liquid Al: critical evaluation and correlation. Mater Sci Eng A. 2003;363(1–2):140–151.
  • Zuo LJ, Ye B, Feng J, et al. Effect of ε-Al3Ni phase on mechanical properties of Al–Si–Cu–Mg–Ni alloys at elevated temperature. Mater Sci Eng A. 2020;772:1387.
  • Poplawsky JD, Milligan BK, Allard LF, et al. The synergistic role of Mn and Zr/Ti in producing L12 co-precipitates in Al-Cu alloys. Acta Mater 2020;194:577–586.
  • Knipling KE, Dunand DC, Seidman DN. Criteria for developing castable, creep resistant aluminum-based alloys-a review. Z Für Met. 2006;97(3):246–265.
  • Bian ZY, Dai SH, Wu L, et al. Thermal stability of Al-Fe-Ni alloy at high temperatures. J Mater Res Technol. 2019;8(3):2538–2548.
  • Bian ZY, Liu YT, Dai SH, et al. Regulating microstructures and mechanical properties of Al-Fe-Ni alloys. Prog Nat Sci Mater Int. 2020;30:54–62.
  • Liu YT, Bian ZY, Chen Z, et al. Effect of Mn on the elevated temperature mechanical properties of Al-La alloys. Mater Char. 2019;155:109821.
  • Sims ZC, Rios OR, Weiss D, et al. High performance aluminum-cerium alloys for high-temperature applications. Mater Horiz 2017;4:1070–1078.
  • Gladman T. Precipitation hardening in metals. Mater Sci Technol 1999;15(1):30–36.
  • Li YJ, Muggerud AMF, Olsen A, et al. Precipitation of partially coherent α-Al(Mn,Fe)Si dispersoids and their strengthening effect in AA 3003 alloy. Acta Mater 2012;60:1004–1014.
  • Jia QB, Zhang F, Rometsch P, et al. Precipitation kinetics, microstructure evolution and mechanical behavior of a developed Al–Mn–Sc alloy fabricated by selective laser melting. Acta Mater 2020;193:239–251.
  • Spierings AB, Dawson K, Uggowitzer PJ, et al. Influence of SLM scan-speed on microstructure, precipitation of Al3Sc particles and mechanical properties in Sc- and Zr-modified Al-Mg alloys. Mater Des 2018;140:134–143.
  • Seidman DN, Marquis EA, Dunand DC. Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys. Acta Mater 2002;50:4021–4035.
  • Fuller CB, Seidman DN, Dunand DC. Mechanical properties of Al(Sc,Zr) alloys at ambient and elevated temperatures. Acta Mater 2003;51(16):4803–4814.
  • Biswas A, Siegel DJ, Seidman DN. Simultaneous segregation at coherent and semicoherent heterophase interfaces. Phys Rev Lett 2010;105:076102.
  • Chen BA, Liu G, Wang RH, et al. Effect of interfacial solute segregation on ductile fracture of Al–Cu–Sc alloys. Acta Mater 2013;61:1676–1690.
  • Gao YH, Yang C, Zhang JY, et al. Stabilizing nanoprecipitates in Al-Cu alloys for creep resistance at 300°C. Mater Res Lett. 2019;7(1):18–25.
  • Chanda B, Potnis G, Jana PP, et al. A review on nano-/ultrafine advanced eutectic alloys. J Alloys Compd 2020;827:154226.
  • Zhou Q, Hua DP, Du Y, et al. Atomistic study of atomic structures and dislocation nucleation at Al/Al2Cu interfaces. Int J Plast 2019;120:115–126.
  • Liu GS, Wang SJ, Misra A, et al. Interface-mediated plasticity of nanoscale Al-Al2Cu eutectics. Acta Mater 2020;186:443–453.
  • Wu WQ, Gong MY, Wei BQ, et al. Atomistic modeling of interface strengthening in Al-Si eutectic alloys. Acta Mater 2022;225:117586.
  • Wei BQ, Wu WQ, Xie DY, et al. In situ characterization of tensile behavior of laser rapid solidified Al-Si heterogeneous microstructures. Mater Res Lett. 2021;9:507–515.
  • Suwanpreecha C, Toinin JP, Michi RA, et al. Strengthening mechanisms in Al-Ni-Sc alloys containing Al3Ni microfibers and Al3Sc nanoprecipitates. Acta Mater 2019;164:334–346.
  • Yi M, Zhang P, Yang C, et al. Improving creep resistance of Al-12 wt.% Ce alloy by microalloying with Sc. Script Mater. 2021;198:113838.
  • Hÿtch MJ, Snoeck E, Kilaas R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy. 1998;74:131–146.
  • Knipling KE, Dunand DC, Seidman DN. Ambient- and high-temperature mechanical properties of isochronally aged Al-0.06Sc, Al-0.06Zr and Al-0.06Sc -0.06Zr (at. %) alloys. Acta Mater 2011;59(3):943–954.
  • Bian ZY, Xiao YK, Hu L, et al. Stimulated heterogeneous distribution of Sc element and its correlated local hardening effect in Al-Fe-Ni-Sc alloy. Mater Sci Eng A. 2020;771:138650.
  • Nie JF, Zhu YM, Liu JZ, et al. Periodic segregation of solute atoms in fully coherent twin boundaries. Science. 2013;340:957–960.
  • Himbeault DD, Cahoon JR. Creep regimes for directionally solidified Al-Al3Ni eutectic composite. Metall Trans A. 1993;24(12):2721–2730.
  • Spigarelli S, Cabibbo M, Evangelista E, et al. Creep properties of an Al-2024 composite reinforced with SiC particulates. Mater Sci Eng A. 2002;328:39–47.
  • Ma Y, Langdon TG. Creep behavior of an Al-6061 metal matrix composite produced by liquid metallurgy processing. Mater Sci Eng A. 1997;230:183–187.
  • Glerum JA, Mogonye J, Dunand DC. Creep properties and microstructure evolution at 260–300 °C of AlSi10Mg manufactured via laser powder-bed fusion. Mater Sci Eng A. 2022;843:143075.
  • Fernández R, González-Doncel G. Threshold stress and load partitioning during creep of metal matrix composites. Acta Mater 2008;56:2549–2562.
  • Chen CL, Richter A, Thomson RC. Investigation of mechanical properties of intermetallic phases in multi-component Al–Si alloys using hot-stage nanoindentation. Intermetallics. 2010;18:499–508.