3,647
Views
2
CrossRef citations to date
0
Altmetric
Brief Overview

Spatially controlled two-dimensional quantum heterostructures

ORCID Icon, & ORCID Icon
Pages 327-346 | Received 10 Oct 2022, Published online: 05 Dec 2022

References

  • Stanford MG, Rack PD, Jariwala D. Emerging nanofabrication and quantum confinement techniques for 2D materials beyond graphene. npj 2D Mat Appl. 2018;2(1):20. doi:10.1038/s41699-018-0065-3.
  • Chowdhury T, Sadler EC, Kempa TJ. Progress and prospects in transition-metal dichalcogenide research beyond 2D. Chem Rev. 2020;120(22):12563–12591. doi:10.1021/acs.chemrev.0c00505.
  • Chen P, Zhang Z, Duan X, et al. Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices. Chem Soc Rev. 2018;47(9):3129–3151. doi:10.1039/C7CS00887B.
  • Li J, Liang J, Yang X, et al. Controllable preparation of 2D vertical van der waals heterostructures and superlattices for functional applications. Small. 2022;18(22):2107059. doi:10.1002/smll.202107059.
  • Lim H, Yoon SI, Kim G, et al. Stacking of two-dimensional materials in lateral and vertical directions. Chem Mater. 2014;26(17):4891–4903. doi:10.1021/cm502170q.
  • Kim G, Shin HS. Spatially controlled lateral heterostructures of graphene and transition metal dichalcogenides toward atomically thin and multi-functional electronics. Nanoscale. 2020;12(9):5286–5292. doi:10.1039/C9NR10859A.
  • Li J, Zhong YL, Zhang D. Excitons in monolayer transition metal dichalcogenides. J Phys: Condens Matter. 2015;27(31):315301. doi:10.1088/0953-8984/27/31/315301.
  • Gan ZX, Liu LZ, Wu HY, et al. Quantum confinement effects across two-dimensional planes in MoS2 quantum dots. Appl Phys Lett. 2015;106(23):233113. doi:10.1063/1.4922551.
  • Mukherjee S, Maiti R, Katiyar AK, et al. Novel colloidal MoS2 quantum dot heterojunctions on silicon platforms for multifunctional optoelectronic devices. Sci Rep. 2016;6(1):29016. doi:10.1038/srep29016.
  • Wei G, Czaplewski DA, Lenferink EJ, et al. Size-tunable lateral confinement in monolayer semiconductors. Sci Rep. 2017;7(1):3324. doi:10.1038/s41598-017-03594-z.
  • Golovynskyi S, Bosi M, Seravalli L, et al. Mos2 two-dimensional quantum dots with weak lateral quantum confinement: intense exciton and trion photoluminescence. Surfaces Inter. 2021;23:100909. doi:10.1016/j.surfin.2020.100909.
  • Cadiz F, Robert C, Courtade E, et al. Exciton diffusion in WSe2 monolayers embedded in a van der waals heterostructure. Appl Phys Lett. 2018;112(15):152106. doi:10.1063/1.5026478.
  • Pan S, Kong W, Liu J, et al. Understanding spatiotemporal photocarrier dynamics in monolayer and bulk MoTe2 for optimized optoelectronic devices. ACS Appl Nano Mat. 2019;2(1):459–464. doi:10.1021/acsanm.8b02008.
  • Goodman AJ, Lien DH, Ahn GH, et al. Substrate-dependent exciton diffusion and annihilation in chemically treated MoS2 and WS2. J Phys Chem C. 2020;124(22):12175–12184. doi:10.1021/acs.jpcc.0c04000.
  • Giannazzo F, Sonde S, Nigro RL, et al. Mapping the density of scattering centers limiting the electron mean free path in graphene. Nano Lett. 2011;11(11):4612–4618. doi:10.1021/nl2020922.
  • Danneau R, Wu F, Craciun MF, et al. Shot noise in ballistic graphene. Phys Rev Lett. 2008;100(19):196802. doi:10.1103/PhysRevLett.100.196802.
  • Sarma S D, Adam S, Hwang EH, et al. Electronic transport in two-dimensional graphene. Rev Mod Phys. 2011;83(2):407–470. doi:10.1103/RevModPhys.83.407.
  • Terrés B, Dauber J, Volk C, et al. Disorder induced Coulomb gaps in graphene constrictions with different aspect ratios. Appl Phys Lett. 2011;98(3):032109. doi:10.1063/1.3544580.
  • Borunda MF, Hennig H, Heller EJ. Ballistic versus diffusive transport in graphene. Phys Rev B. 2013;88(12):125415. doi:10.1103/PhysRevB.88.125415.
  • Terrés B, Chizhova LA, Libisch F, et al. Size quantization of Dirac fermions in graphene constrictions. Nat Commun. 2016;7(1):11528. doi:10.1038/ncomms11528.
  • Smithe KKH, English CD, Suryavanshi SV, et al. Intrinsic electrical transport and performance projections of synthetic monolayer MoS 2 devices. 2D Mater. 2016;4(1):011009. doi:10.1088/2053-1583/4/1/011009.
  • Pisoni R, Lee Y, Overweg H, et al. Gate-defined one-dimensional channel and broken symmetry states in MoS2 van der Waals heterostructures. Nano Lett. 2017;17(8):5008–5011. doi:10.1021/acs.nanolett.7b02186.
  • Pisoni R, Lei Z, Back P, et al. Gate-tunable quantum dot in a high quality single layer MoS2 van der Waals heterostructure. Appl Phys Lett. 2018;112(12):123101. doi:10.1063/1.5021113.
  • Boddison-Chouinard J, Bogan A, Fong N, et al. Gate-controlled quantum dots in monolayer WSe2. Appl Phys Lett. 2021;119(13):133104. doi:10.1063/5.0062838.
  • Jing F-M, Zhang Z-Z, Qin G-Q, et al. Gate-controlled quantum dots based on 2D materials. Adv Quant Technol. 2022;5(6):2100162. doi:10.1002/qute.202100162.
  • Li F, Feng Y, Li Z, et al. Rational kinetics control toward universal growth of 2D vertically stacked heterostructures. Adv Mater. 2019;31(27):1901351. doi:10.1002/adma.201901351.
  • Wang D, Zhang Z, Huang B, et al. Few-Layer WS2–WSe2 lateral heterostructures: influence of the Gas precursor selenium/tungsten ratio on the number of layers. ACS Nano. 2022;16(1):1198–1207. doi:10.1021/acsnano.1c08979.
  • Zou Z, Liang J, Zhang X, et al. Liquid-Metal-Assisted growth of vertical GaSe/MoS2 p–n heterojunctions for sensitive self-driven photodetectors. ACS Nano. 2021;15(6):10039–10047. doi:10.1021/acsnano.1c01643.
  • Gong Y, Lei S, Ye G, et al. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 2015;15(9):6135–6141. doi:10.1021/acs.nanolett.5b02423.
  • Sutter P, Huang Y, Sutter E. Nanoscale integration of two-dimensional materials by lateral heteroepitaxy. Nano Lett. 2014;14(8):4846–4851. doi:10.1021/nl502110q.
  • Zhang Z, Chen P, Duan X, et al. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science. 2017;357(6353):788–792. doi:10.1126/science.aan6814.
  • Xie S, Tu L, Han Y, et al. Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science. 2018;359(6380):1131–1136. doi:10.1126/science.aao5360.
  • Najafidehaghani E, Gan Z, George A, et al. 1D p–n junction electronic and optoelectronic devices from transition metal dichalcogenide lateral heterostructures grown by one-pot chemical vapor deposition synthesis. Adv Funct Mater. 2021;31(27):2101086. doi:10.1002/adfm.202101086.
  • Li M-Y, Pu J, Huang J-K, et al. Self-aligned and scalable growth of monolayer WSe2–MoS2 lateral heterojunctions. Adv Funct Mater. 2018;28(17):1706860. doi:10.1002/adfm.201706860.
  • Zhang C, Li M-Y, Tersoff J, et al. Strain distributions and their influence on electronic structures of WSe2–MoS2 laterally strained heterojunctions. Nat Nanotechnol. 2018;13(2):152–158. doi:10.1038/s41565-017-0022-x.
  • Song S, Yoon A, Ha J-K, et al. Atomic transistors based on seamless lateral metal-semiconductor junctions with a sub-1-nm transfer length. Nat Commun. 2022;13(1):4916. doi:10.1038/s41467-022-32582-9.
  • Jin G, Lee C-S, Okello OFN, et al. Heteroepitaxial van der Waals semiconductor superlattices. Nat Nanotechnol. 2021;16(10):1092–1098. doi:10.1038/s41565-021-00942-z.
  • Liu H, Zhu X, Sun X, et al. Self-Powered broad-band photodetectors based on vertically stacked WSe2/Bi2Te3 p–n heterojunctions. ACS Nano. 2019;13(11):13573–13580. doi:10.1021/acsnano.9b07563.
  • Zhao B, Wan Z, Liu Y, et al. High-order superlattices by rolling up van der Waals heterostructures. Nature. 2021;591(7850):385–390. doi:10.1038/s41586-021-03338-0.
  • Liu X, Balla I, Bergeron H, et al. Rotationally commensurate growth of MoS2 on epitaxial graphene. ACS Nano. 2016;10(1):1067–1075. doi:10.1021/acsnano.5b06398.
  • Zhang Z, Huang Z, Li J, et al. Endoepitaxial growth of monolayer mosaic heterostructures. Nat Nanotechnol. 2022;17(5):493–499. doi:10.1038/s41565-022-01106-3.
  • Lu X, Yang W, Wang S, et al. Graphene nanoribbons epitaxy on boron nitride. Appl Phys Lett. 2016;108(11):113103. doi:10.1063/1.4943940.
  • Chen L, He L, Wang HS, et al. Oriented graphene nanoribbons embedded in hexagonal boron nitride trenches. Nat Commun. 2017;8(1):14703. doi:10.1038/ncomms14703.
  • Wang HS, Chen L, Elibol K, et al. Towards chirality control of graphene nanoribbons embedded in hexagonal boron nitride. Nat Mater. 2021;20(2):202–207. doi:10.1038/s41563-020-00806-2.
  • Li J, Yang X, Liu Y, et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature. 2020;579(7799):368–374. doi:10.1038/s41586-020-2098-y.
  • Heilmann M, Deinhart V, Tahraoui A, et al. Spatially controlled epitaxial growth of 2D heterostructures via defect engineering using a focused He ion beam. npj 2D Materials and Applications. 2021;5(1):70. doi:10.1038/s41699-021-00250-z.
  • Zhao M, Ye Y, Han Y, et al. Large-scale chemical assembly of atomically thin transistors and circuits. Nat Nanotechnol. 2016;11(11):954–959. doi:10.1038/nnano.2016.115.
  • Hong W, Shim GW, Yang SY, et al. Improved electrical contact properties of MoS2-graphene lateral heterostructure. Adv Funct Mater. 2019;29(6):1807550. doi:10.1002/adfm.201807550.
  • Mahjouri-Samani M, Lin M-W, Wang K, et al. Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors. Nat Commun. 2015;6(1):7749. doi:10.1038/ncomms8749.
  • Choi S, Kim YJ, Jeon J, et al. Scalable Two-dimensional lateral metal/semiconductor junction fabricated with selective synthetic integration of transition-metal-carbide (Mo2C)/-dichalcogenide (MoS2). ACS Appl Mater Interfaces. 2019;11(50):47190–47196. doi:10.1021/acsami.9b13660.
  • Gong Y, Shi G, Zhang Z, et al. Direct chemical conversion of graphene to boron- and nitrogen- and carbon-containing atomic layers. Nat Commun. 2014;5(1):3193. doi:10.1038/ncomms4193.
  • Kim G, Lim H, Ma KY, et al. Catalytic conversion of hexagonal boron nitride to graphene for in-plane heterostructures. Nano Lett. 2015;15(7):4769–4775. doi:10.1021/acs.nanolett.5b01704.
  • Kim G, Kim S-S, Jeon J, et al. Planar and van der Waals heterostructures for vertical tunnelling single electron transistors. Nat Commun. 2019;10(1):230. doi:10.1038/s41467-018-08227-1.
  • Kim G, Ma KY, Park M, et al. Blue emission at atomically sharp 1D heterojunctions between graphene and h-BN. Nat Commun. 2020;11(1):5359. doi:10.1038/s41467-020-19181-2.
  • Han Y, Li M-Y, Jung G-S, et al. Sub-nanometre channels embedded in two-dimensional materials. Nat Mater. 2018;17(2):129–133. doi:10.1038/nmat5038.
  • Zhang Q, Wang X-F, Shen S-H, et al. Simultaneous synthesis and integration of two-dimensional electronic components. Nature Electronics. 2019;2(4):164–170. doi:10.1038/s41928-019-0233-2.
  • Wu W, Zhang Q, Zhou X, et al. Self-powered photovoltaic photodetector established on lateral monolayer MoS2-WS2 heterostructures. Nano Energy. 2018;51:45–53. doi:10.1016/j.nanoen.2018.06.049.
  • Gong Y, Lin J, Wang X, et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat Mater. 2014;13(12):1135–1142. doi:10.1038/nmat4091.
  • Geng D, Zhao X, Chen Z, et al. Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Adv Mater. 2017;29(35):1700072. doi:10.1002/adma.201700072.
  • Schaefer CM, Caicedo Roque JM, Sauthier G, et al. Carbon incorporation in MOCVD of MoS2 thin films grown from an organosulfide precursor. Chem Mater. 2021;33(12):4474–4487. doi:10.1021/acs.chemmater.1c00646.
  • Kang K, Xie S, Huang L, et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature. 2015;520(7549):656–660. doi:10.1038/nature14417.
  • Xiang R, Inoue T, Zheng Y, et al. One-dimensional van der Waals heterostructures. 2020;367(6477):537–542. doi:10.1126/science.aaz2570.
  • Gogotsi Y, Yakobson BI. Nested hybrid nanotubes. 2020;367(6477):506–507. doi:doi:10.1126/science.aba6133.
  • Levendorf MP, Kim C-J, Brown L, et al. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature. 2012;488(7413):627–632. doi:10.1038/nature11408.
  • Liu Z, Ma L, Shi G, et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat Nanotechnol. 2013;8(2):119–124. doi:10.1038/nnano.2012.256.
  • Li H, Li P, Huang J-K, et al. Laterally stitched heterostructures of transition metal dichalcogenide: chemical vapor deposition growth on lithographically patterned area. ACS Nano. 2016;10(11):10516–10523. doi:10.1021/acsnano.6b06496.
  • Li H, Wu X, Liu H, et al. Composition-modulated Two-dimensional semiconductor lateral heterostructures via layer-selected atomic substitution. ACS Nano. 2017;11(1):961–967. doi:10.1021/acsnano.6b07580.
  • Zhou J, Lin J, Huang X, et al. A library of atomically thin metal chalcogenides. Nature. 2018;556(7701):355–359. doi:10.1038/s41586-018-0008-3.
  • Wada N, Pu J, Takaguchi Y, et al. Efficient and chiral electroluminescence from in-plane heterostructure of transition metal dichalcogenide monolayers. Adv Funct Mater. 2022;32(40):2203602. doi:10.1002/adfm.202203602.
  • Withers F, Del Pozo-Zamudio O, Mishchenko A, et al. Light-emitting diodes by band-structure engineering in van der waals heterostructures. Nat Mater. 2015;14(3):301–306. doi:10.1038/nmat4205.
  • Qiu Q, Huang Z. Photodetectors of 2D materials from ultraviolet to terahertz waves. Adv Mater. 2021;33(15):2008126. doi:10.1002/adma.202008126.
  • Ihn T, Güttinger J, Molitor F, et al. Graphene single-electron transistors. Mater Today. 2010;13(3):44–50. doi:10.1016/S1369-7021(10)70033-X.
  • Liu X, Hersam MC. 2D materials for quantum information science. Nat Rev Mat. 2019;4(10):669–684. doi:10.1038/s41578-019-0136-x.
  • Xiao D, Liu G-B, Feng W, et al. Coupled spin and valley physics in monolayers of ${{MoS}}_{2}$ and other group-VI dichalcogenides. Phys Rev Lett. 2012;108(19):196802. doi:10.1103/PhysRevLett.108.196802.
  • Xu X, Yao W, Xiao D, et al. Spin and pseudospins in layered transition metal dichalcogenides. Nat Phys. 2014;10(5):343–350. doi:10.1038/nphys2942.
  • Kormányos A, Zólyomi V, Drummond ND, et al. Monolayer MoS${}_{2}$: trigonal warping, the {Γ}$ valley, and spin-orbit coupling effects. Phy Rev B. 2013;88(4):045416. doi:10.1103/PhysRevB.88.045416.
  • Novoselov KS, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures. Science. 2016;353(6298):aac9439. doi:10.1126/science.aac9439.
  • Kormányos A, Zólyomi V, Drummond ND, et al. Spin-orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides. Phys Rev X. 2014;4(1):011034. doi:10.1103/PhysRevX.4.011034.
  • Song S, Sim Y, Kim S-Y, et al. Wafer-scale production of patterned transition metal ditelluride layers for two-dimensional metal–semiconductor contacts at the Schottky–Mott limit. Nat Electron. 2020;3(4):207–215. doi:10.1038/s41928-020-0396-x.
  • Qiu C, Liu F, Xu L, et al. Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches. Science. 2018;361(6400):387–392. doi:10.1126/science.aap9195.
  • Liu F, Qiu C, Zhang Z, et al. Dirac electrons at the source: breaking the 60-mV/decade switching limit. IEEE Trans Electron Devices. 2018;65(7):2736–2743. doi:10.1109/TED.2018.2836387.
  • Pan Y, Fölsch S, Nie Y, et al. Quantum-confined electronic states arising from the moiré pattern of MoS2–WSe2 heterobilayers. Nano Lett. 2018;18(3):1849–1855. doi:10.1021/acs.nanolett.7b05125.
  • Kim H, Ovchinnikov D, Deiana D, et al. Suppressing nucleation in metal–organic chemical vapor deposition of MoS2 monolayers by alkali metal halides. Nano Lett. 2017;17(8):5056–5063.
  • Tang L, Li T, Luo Y, et al. Vertical chemical vapor deposition growth of highly uniform 2D transition metal dichalcogenides. Acs Nano. 2020;14(4):4646–4653.
  • Lee DH, Sim Y, Wang J, et al. Metal–organic chemical vapor deposition of 2D van der Waals materials—The challenges and the extensive future opportunities. APL Mater. 2020;8(3):030901. doi:10.1063/1.5142601.
  • Zhang Z, Gong Y, Zou X, et al. Epitaxial growth of two-dimensional metal–semiconductor transition-metal dichalcogenide vertical stacks (VSe2/MX2) and their band alignments. ACS Nano. 2019;13(1):885–893. doi:10.1021/acsnano.8b08677.
  • Pitthan E, Gerling ERF, Feijó TO, et al. Annealing response of monolayer MoS2 grown by chemical vapor deposition. ECS J Solid State Sci Technol. 2019;8(4):P267–P270. doi:10.1149/2.0061904jss.
  • Song S, Kim S-Y, Kwak J, et al. Electrically robust single-crystalline WTe2 nanobelts for nanoscale electrical interconnects. Adv Sci. 2019;6(3):1801370. doi:10.1002/advs.201801370.
  • Cai S, Zhao W, Zafar A, et al. Photoluminescence characterization of the grain boundary thermal stability in chemical vapor deposition grown WS2. Mater Res Express. 2017;4(10):106202. doi:10.1088/2053-1591/aa8f82.
  • Zhang T, Fujisawa K, Granzier-Nakajima T, et al. Clean transfer of 2D transition metal dichalcogenides using cellulose acetate for atomic resolution characterizations. ACS Appl Nano Mat. 2019;2(8):5320–5328. doi:10.1021/acsanm.9b01257.
  • Kim C, Yoon M-A, Jang B, et al. Damage-free transfer mechanics of 2-dimensional materials: competition between adhesion instability and tensile strain. NPG Asia Mater. 2021;13(1):44. doi:10.1038/s41427-021-00311-1.
  • Liang J, Xu K, Toncini B, et al. Impact of post-lithography polymer residue on the electrical characteristics of MoS2 and WSe2 field effect transistors. Adv Mater Interfaces. 2019;6(3):1801321.
  • Naylor CH, Parkin WM, Gao Z, et al. Large-area synthesis of high-quality monolayer 1T’-WTe 2 flakes. 2D Mater. 2017;4(2):021008. doi:10.1088/2053-1583/aa5921.
  • Yang L, Wu H, Zhang W, et al. Anomalous oxidation and its effect on electrical transport originating from surface chemical instability in large-area, few-layer 1T′-MoTe2 films. Nanoscale. 2018;10(42):19906–19915. doi:10.1039/C8NR05699D.
  • Chakraborty C, Kinnischtzke L, Goodfellow KM, et al. Voltage-controlled quantum light from an atomically thin semiconductor. Nat Nanotechnol. 2015;10(6):507–511. doi:10.1038/nnano.2015.79.
  • He Y-M, Clark G, Schaibley JR, et al. Single quantum emitters in monolayer semiconductors. Nat Nanotechnol. 2015;10(6):497–502. doi:10.1038/nnano.2015.75.
  • Koperski M, Nogajewski K, Arora A, et al. Single photon emitters in exfoliated WSe2 structures. Nat Nanotechnol. 2015;10(6):503–506. doi:10.1038/nnano.2015.67.
  • Srivastava A, Sidler M, Allain AV, et al. Optically active quantum dots in monolayer WSe2. Nat Nanotechnol. 2015;10(6):491–496. doi:10.1038/nnano.2015.60.