1,285
Views
0
CrossRef citations to date
0
Altmetric
Perspective Piece

Progress and perspective on multi-dimensional structured carbon nanomaterials for cathodes in aqueous zinc-based energy storage

, &
Pages 481-516 | Received 16 Dec 2022, Published online: 07 Mar 2023

References

  • Zhu Y-h, Cui Y-f, Xie Z-l, et al. Decoupled aqueous batteries using pH-decoupling electrolytes. Nat Rev Chem. 2022;6(7):505–517.
  • Ma L, Schroeder MA, Borodin O, et al. Realizing high zinc reversibility in rechargeable batteries. Nat Energy. 2020;5(10):743–749.
  • Huang M, Wang X, Liu X, et al. Fast ionic storage in aqueous rechargeable batteries: from fundamentals to applications. Adv Mater. 2022;34(9):2105611.
  • Deng Y-P, Liang R, Jiang G, et al. The current state of aqueous Zn-based rechargeable batteries. ACS Energy Lett. 2020;5(5):1665–1675.
  • Xu L, Xu N, Yan C, et al. Storage mechanisms and improved strategies for manganese-based aqueous zinc-ion batteries. J Electroanal Chem. 2021;888:115196.
  • Li C, Zhang X, He W, et al. Cathode materials for rechargeable zinc-ion batteries: from synthesis to mechanism and applications. J Power Sources. 2020;449:227596.
  • Wu B, Luo W, Li M, et al. Achieving better aqueous rechargeable zinc ion batteries with heterostructure electrodes. Nano Res. 2021;14(9):3174–3187.
  • Zhao X, Liang X, Li Y, et al. Challenges and design strategies for high performance aqueous zinc ion batteries. Energy Storage Mater. 2021;42:533–569.
  • Wang X, Zhang Z, Xi B, et al. Advances and perspectives of cathode storage chemistry in aqueous zinc-Ion batteries. ACS Nano. 2021;15(6):9244–9272.
  • Yang Q, Li X, Chen Z, et al. Cathode engineering for high energy density aqueous Zn batteries. Acc Mater Res. 2022;3(1):78–88.
  • Niu Y, Gong S, Liu X, et al. Engineering iron-group bimetallic nanotubes as efficient bifunctional oxygen electrocatalysts for flexible Zn–air batteries. eScience. 2022;2(5):546–556.
  • Liu Y, Umar A, Wu X. Metal-organic framework derived porous cathode materials for hybrid zinc ion capacitor. Rare Met. 2022;41(9):2985–2991.
  • Hu Y, Fu C, Chai S, et al. Construction of zinc metal-Tin sulfide polarized interface for stable Zn metal batteries. Adv Powder Mater. 2023;2(2):100093.
  • Wang M, Meng Y, Li K, et al. Toward dendrite-free and anti-corrosion Zn anodes by regulating a bismuth-based energizer. eScience. 2022;2(5):509–517.
  • Huang S, Zhu J, Tian J, et al. Recent progress in the electrolytes of aqueous zinc-ion batteries. Chem Eur J. 2019;25(64):14480–14494.
  • Jia X, Liu C, Neale ZG, et al. Active materials for aqueous zinc Ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem Rev. 2020;120(15):7795–7866.
  • Zhang T, Tang Y, Guo S, et al. Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy Environ Sci. 2020;13(12):4625–4665.
  • Islam S, Alfaruqi MH, Mathew V, et al. Facile synthesis and the exploration of the zinc storage mechanism of β-MnO2nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries. J Mater Chem A. 2017;5(44):23299–23309.
  • Guo C, Liu H, Li J, et al. Ultrathin δ-MnO2 nanosheets as cathode for aqueous rechargeable zinc ion battery. Electrochim Acta. 2019;304:370–377.
  • Wang J, Wang J-G, Liu H, et al. A highly flexible and lightweight MnO2/graphene membrane for superior zinc-ion batteries. Adv Funct Mater. 2021;31(7):2007397.
  • Deng S, Tie Z, Yue F, et al. Rational design of ZnMn2O4quantum dots in a carbon framework for durable aqueous zinc-Ion batteries. Angew Chem Int Ed. 2022;61(12):e202115877.
  • Long J, Yang Z, Yang F, et al. Electrospun core-shell Mn3O4/carbon fibers as high-performance cathode materials for aqueous zinc-ion batteries. Electrochim Acta. 2020;344:136155.
  • Zhou W, Chen J, He C, et al. Hybridizing δ-type NaxV2O5·nH2O with graphene towards high-performance aqueous zinc-ion batteries. Electrochim Acta. 2019;321:134689.
  • Sambandam B, Soundharrajan V, Kim S, et al. Aqueous rechargeable Zn-ion batteries: an imperishable and high-energy Zn2V2O7nanowire cathode through intercalation regulation. J Mater Chem A. 2018;6(9):3850–3856.
  • Li Y, Huang Z, Kalambate PK, et al. V2o5 nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery. Nano Energy. 2019;60:752–759.
  • Ko JS, Paul PP, Wan G, et al. NASICON na3v2(PO4)3enables quasi-two-stage Na+and Zn2+intercalation for multivalent zinc batteries. Chem Mater. 2020;32(7):3028–3035.
  • Niu Y, Wang D, Ma Y, et al. Cascading V2O3/N-doped carbon hybrid nanosheets as high-performance cathode materials for aqueous zinc-ion batteries. Chin Chem Lett. 2022;33(3):1430–1434.
  • Trócoli R, La Mantia F. An aqueous zinc-ion battery based on copper hexacyanoferrate. ChemSusChem. 2015;8(3):481–485.
  • Ma L, Chen S, Long C, et al. Achieving high-voltage and high-capacity aqueous rechargeable zinc Ion battery by incorporating Two-species redox reaction. Adv Energy Mater. 2019;9(45):1902446.
  • Cui M, Fei J, Mo F, et al. Ultra-High-Capacity and dendrite-free zinc–sulfur conversion batteries based on a low-cost deep eutectic solvent. ACS Appl Mater Interfaces. 2021;13(46):54981–54989.
  • Li W, Wang K, Jiang K. A low cost aqueous Zn–S battery realizing ultrahigh energy density. Adv Sci. 2020;7(23):2000761.
  • Zhang H, Shang Z, Luo G, et al. Redox catalysis promoted activation of sulfur redox chemistry for energy-dense flexible solid-state Zn–S battery. ACS Nano. 2022;16(5):7344–7351.
  • Chen Z, Mo F, Wang T, et al. Zinc/selenium conversion battery: a system highly compatible with both organic and aqueous electrolytes. Energy Environ Sci. 2021;14(4):2441–2450.
  • Chen Z, Yang Q, Mo F, et al. Aqueous zinc–tellurium batteries with ultraflat discharge plateau and high volumetric capacity. Adv Mater. 2020;32(42):2001469.
  • Wang L, Peng M, Chen J, et al. High energy and power zinc Ion capacitors: a dual-Ion adsorption and reversible chemical adsorption coupling mechanism. ACS Nano. 2022;16(2):2877–2888.
  • Wu S, Chen Y, Jiao T, et al. An aqueous Zn-ion hybrid supercapacitor with high energy density and ultrastability up to 80 000 cycles. Adv Energy Mater. 2019;9(47):1902915.
  • An G-H. Ultrafast long-life zinc-ion hybrid supercapacitors constructed from mesoporous structured activated carbon. Appl Surf Sci. 2020;530:147220.
  • Lee B, Yoon CS, Lee HR, et al. Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide. Sci Rep. 2014;4(1):6066.
  • Wang H, Zhang S, Deng C. In situ encapsulating metal oxides into core–shell hierarchical hybrid fibers for flexible zinc-ion batteries toward high durability and ultrafast capability for wearable applications. ACS Appl Mater Interfaces. 2019;11(39):35796–35808.
  • Yin Y-X, Xin S, Guo Y-G, et al. Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Ed. 2013;52(50):13186–13200.
  • Li H, Ma L, Han C, et al. Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy. 2019;62:550–587.
  • Yin J, Zhang W, Alhebshi NA, et al. Electrochemical zinc ion capacitors: fundamentals, materials, and systems. Adv Energy Mater. 2021;11(21):2100201.
  • Wang H, Ye W, Yang Y, et al. Zn-ion hybrid supercapacitors: achievements, challenges and future perspectives. Nano Energy. 2021;85:105942.
  • Tang H, Yao J, Zhu Y. Recent developments and future prospects for zinc-Ion hybrid capacitors: a review. Adv Energy Mater. 2021;11(14):2003994.
  • Zhu C-L, Wang H-L, Fan W-J, et al. Large-scale doping-engineering enables boron/nitrogen dual-doped porous carbon for high-performance zinc ion capacitors. Rare Met. 2022;41(7):2505–2516.
  • Ma L, Ying Y, Chen S, et al. Electrocatalytic selenium redox reaction for high-mass-loading zinc-selenium batteries with improved kinetics and selenium utilization. Adv Energy Mater. 2022;12(26):2201322.
  • Alfaruqi MH, Islam S, Putro DY, et al. Structural transformation and electrochemical study of layered MnO2 in rechargeable aqueous zinc-ion battery. Electrochim Acta. 2018;276:1–11.
  • Yan M, He P, Chen Y, et al. Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv Mater. 2018;30(1):1703725.
  • Jiang B, Xu C, Wu C, et al. Manganese sesquioxide as cathode material for multivalent zinc Ion battery with high capacity and long cycle life. Electrochim Acta. 2017;229:422–428.
  • Huang S, He S, Qin H, et al. Oxygen defect hydrated vanadium dioxide/graphene as a superior cathode for aqueous Zn batteries. ACS Appl Mater Interfaces. 2021;13(37):44379–44388.
  • Lin Y, Zhou F, Chen M, et al. Building defect-rich oxide nanowires@graphene coaxial scrolls to boost high-rate capability, cycling durability and energy density for flexible Zn-ion batteries. Chem Eng J. 2020;396:125259.
  • Wang D, Wang L, Liang G, et al. A superior δ-MnO2cathode and a self-healing Zn-δ-MnO2battery. ACS Nano. 2019;13(9):10643–10652.
  • Li X, Li M, Yang Q, et al. Vertically aligned Sn4+ preintercalated Ti2CTX MXene sphere with enhanced Zn Ion transportation and superior cycle lifespan. Adv Energy Mater. 2020;10(35):2001394.
  • Frackowiak E, Béguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon N Y. 2001;39(6):937–950.
  • Tian W, Zhang H, Duan X, et al. Porous carbons: structure-oriented design and versatile applications. Adv Funct Mater. 2020;30(17):1909265.
  • Dou S, Tian Q, Liu T, et al. Stress-regulation design of mesoporous carbon spheres anodes with radial pore channels toward ultrastable potassium-Ion batteries. Small Sci. 2022;2(10):2200045.
  • Xu W, Tang C, Huang N, et al. Adina rubella-like microsized SiO@N-doped carbon grafted with N-doped carbon nanotubes as anodes for high-performance lithium storage. Small Sci. 2022;2(4):2100105.
  • Wang X, Wang H. Designing carbon anodes for advanced potassium-ion batteries: materials, modifications, and mechanisms. Adv Powder Mater. 2022;1(4):100057.
  • Chen R, Tang H, He P, et al. Interface engineering of biomass-derived carbon used as ultrahigh-energy-density and practical mass-loading supercapacitor electrodes. Adv Funct Mater. 2022;33(8):2212078.
  • Song T-B, Huang Z-H, Niu X-Q, et al. In-Situ growth of Mn3O4 nanoparticles on nitrogen-doped carbon dots-derived carbon skeleton as cathode materials for aqueous zinc Ion batteries. ChemSusChem. 2022;15(6):e202102390.
  • Dong L, Ma X, Li Y, et al. Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Mater. 2018;13:96–102.
  • Hu H, Wu G. Porous carbon derived from sweet potato biomass as electrode for zinc-ion hybrid supercapacitors. Int J Electrochem Sci. 2021;16(9):210937.
  • Sun G, Yang H, Zhang G, et al. A capacity recoverable zinc-ion micro-supercapacitor. Energy Environ Sci. 2018;11(12):3367–3374.
  • Tian Y, Amal R, Wang D-W. An aqueous metal-ion capacitor with oxidized carbon nanotubes and metallic zinc electrodes. Front Energy Res. 2016;4:34.
  • Li J, Yu L, Wang W, et al. Sulfur incorporation modulated absorption kinetics and electron transfer behavior for nitrogen rich porous carbon nanotubes endow superior aqueous zinc ion storage capability. J Mater Chem A. 2022;10(17):9355–9362.
  • Wan F, Huang S, Cao H, et al. Freestanding potassium vanadate/carbon nanotube films for ultralong-life aqueous zinc-ion batteries. ACS Nano. 2020;14(6):6752–6760.
  • Li W, Chen S, Yu J, et al. In-situ synthesis of interconnected SWCNT/OMC framework on silicon nanoparticles for high performance lithium-ion batteries. Green Energy Environ. 2016;1(1):91–99.
  • Manjunatha R, Dong L, Zhai Z, et al. Pd nanocluster-decorated CoFe composite supported on nitrogen carbon nanotubes as a high-performance trifunctional electrocatalyst. Green Energy Environ. 2022;7(5):933–947.
  • Sun J, Guo N, Song T, et al. Revealing the interfacial electron modulation effect of CoFe alloys with CoC encapsulated in N-doped CNTs for superior oxygen reduction. Adv Powder Mater. 2022;1(3):100023.
  • He H, Lian J, Chen C, et al. Super hydrophilic carbon fiber film for freestanding and flexible cathodes of zinc-ion hybrid supercapacitors. Chem Eng J. 2021;421:129786.
  • Chen X, Li W, Zeng Z, et al. Engineering stable Zn-MnO2 batteries by synergistic stabilization between the carbon nanofiber core and birnessite-MnO2 nanosheets shell. Chem Eng J. 2021;405:126969.
  • Xu N, Yan C, He W, et al. Flexible electrode material of V2O5 carbon fiber cloth for enhanced zinc ion storage performance in flexible zinc-ion battery. J Power Sources. 2022;533:231358.
  • Jin J, Sun Z, Yan T, et al. Demystifying activity origin of M–N–C single-atomic mediators toward expedited rate-determining step in Li–S electrochemistry. Small Sci. 2022;2(10):2200059.
  • Wang X, Li Y, Wang S, et al. 2D amorphous V2O5/graphene heterostructures for high-safety aqueous Zn-Ion batteries with unprecedented capacity and ultrahigh rate capability. Adv Energy Mater. 2020;10(22):2000081.
  • Luo J, Xu L, Liu H, et al. Harmonizing graphene laminate spacing and zinc-Ion solvated structure toward efficient compact capacitive charge storage. Adv Funct Mater. 2022;32(20):2112151.
  • Wang D, Pan Z, Chen G, et al. Glycerol derived mesopore-enriched hierarchically carbon nanosheets as the cathode for ultrafast zinc ion hybrid supercapacitor applications. Electrochim Acta. 2021;379:138170.
  • Zhang H, Chen Z, Zhang Y, et al. Boosting Zn-ion adsorption in cross-linked N/P co-incorporated porous carbon nanosheets for the zinc-ion hybrid capacitor. J Mater Chem A. 2021;9(30):16565–16574.
  • Niu Y, Xu W, Ma Y, et al. Layer-by-layer stacked vanadium nitride nanocrystals/N-doped carbon hybrid nanosheets toward high-performance aqueous zinc-ion batteries. Nanoscale. 2022;14(20):7607–7612.
  • Chen S, Ma L, Zhang K, et al. A flexible solid-state zinc ion hybrid supercapacitor based on co-polymer derived hollow carbon spheres. J Mater Chem A. 2019;7(13):7784–7790.
  • Shang K, Liu Y, Cai P, et al. N, P, and S co-doped 3D porous carbon-architectured cathode for high-performance Zn-ion hybrid capacitors. J Mater Chem A. 2022;10(12):6489–6498.
  • Wang H, Chen Q, Xiao P, et al. Unlocking zinc-ion energy storage performance of onion-like carbon by promoting heteroatom doping strategy. ACS Appl Mater Interfaces. 2022;14(7):9013–9023.
  • Khatoon R, Attique S, Liu R, et al. Carbonized waste milk powders as cathodes for stable lithium–sulfur batteries with ultra-large capacity and high initial coulombic efficiency. Green Energy Environ. 2022;7(5):1071–1083.
  • Xiong L, Qu Z, Shen Z, et al. In situ construction of ball-in-ball structured porous vanadium pentoxide intertwined with carbon fibers induces superior electronic/ionic transport dynamics for aqueous zinc-ion batteries. J Colloid Interface Sci. 2022;615:184–195.
  • Wu J, Meng J, Yang Z, et al. Energy storage mechanism and electrochemical performance of Cu2O/rGO as advanced cathode for aqueous zinc ion batteries. J Alloy Compd. 2022;895:162653.
  • Wang C, Zeng Y, Xiao X, et al. γ-MnO2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc-ion battery. J Mater Chem. 2020;43:182–187.
  • Wang C, Wang M, He Z, et al. Rechargeable aqueous zinc–manganese dioxide/graphene batteries with high rate capability and large capacity. ACS Appl Energy Mater. 2020;3(2):1742–1748.
  • Qin H, Yang Z, Chen L, et al. A high-rate aqueous rechargeable zinc ion battery based on the VS4@rGO nanocomposite. J Mater Chem A. 2018;6(46):23757–23765.
  • Shao Y, Zeng J, Li J, et al. Sandwich structure of 3D porous carbon and water-pillared V2O5nanosheets for superior zinc-Ion storage properties. ChemElectroChem. 2021;8(10):1784–1791.
  • Chen L, Yang Z, Cui F, et al. Ultrathin MnO2nanoflakes grown on N-doped hollow carbon spheres for high-performance aqueous zinc ion batteries. Mater Chem Front. 2020;4(1):213–221.
  • Wang X, Ye L, Zou Y, et al. Constructing ultra-long life and super-rate rechargeable aqueous zinc-ion batteries by integrating Mn doped V6O13 nanoribbons with sulfur-nitrogen modified porous carbon. Mater Today Energy. 2021;19:100593.
  • Xu C, Li B, Du H, et al. Energetic zinc Ion chemistry: the rechargeable zinc Ion battery. Angew Chem Int Ed. 2012;51(4):933–935.
  • Wang J, Wang J-G, Liu H, et al. Electrochemical activation of commercial MnO microsized particles for high-performance aqueous zinc-ion batteries. J Power Sources. 2019;438:226951.
  • Sun W, Wang F, Hou S, et al. Zn/MnO2battery chemistry with H+and Zn2+coinsertion. J Am Chem Soc. 2017;139(29):9775–9778.
  • Qiu N, Chen H, Yang Z, et al. Low-cost birnessite as a promising cathode for high-performance aqueous rechargeable batteries. Electrochim Acta. 2018;272:154–160.
  • Zhang N, Cheng F, Liu Y, et al. Cation-Deficient spinel ZnMn2O4cathode in Zn(CF3SO3)2electrolyte for rechargeable aqueous Zn-Ion battery. J Am Chem Soc. 2016;138(39):12894–12901.
  • Li J, Luo N, Kang L, et al. Hydrogen-bond reinforced superstructural manganese oxide as the cathode for ultra-stable aqueous zinc ion batteries. Adv Energy Mater. 2022;12(44):2201840.
  • Park J-S, Jo JH, Aniskevich Y, et al. Open-structured vanadium dioxide as an intercalation host for Zn ions: investigation by first-principles calculation and experiments. Chem Mater. 2018;30(19):6777–6787.
  • Wan F, Zhang L, Dai X, et al. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat Commun. 2018;9(1):1656.
  • Shan L, Yang Y, Zhang W, et al. Observation of combination displacement/intercalation reaction in aqueous zinc-ion battery. Energy Storage Mater. 2019;18:10–14.
  • Huang M, Li F, Dong F, et al. MnO2-based nanostructures for high-performance supercapacitors. J Mater Chem A. 2015;3(43):21380–21423.
  • Wu L, Dong Y. Recent progress of carbon nanomaterials for high-performance cathodes and anodes in aqueous zinc ion batteries. Energy Storage Mater. 2021;41:715–737.
  • Alfaruqi M, Mathew V, Gim J, et al. Electrochemically induced structural transformation in a γ-MnO2cathode of a high capacity zinc-ion battery system. Chem Mater. 2015;27(10):3609–3620.
  • Pan H, Shao Y, Yan P, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat Energy. 2016;1(5):16039.
  • Boyd S, Augustyn V. Transition metal oxides for aqueous sodium-ion electrochemical energy storage. Inorg Chem Front. 2018;5(5):999–1015.
  • Shao Y, Shen F, Shao Y. Recent advances in aqueous zinc-ion hybrid capacitors: a minireview. ChemElectroChem. 2021;8(3):484–491.
  • Zhang H, Liu Q, Fang Y, et al. Boosting Zn-Ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption. Adv Mater. 2019;31(44):1904948.
  • Fan W, Ding J, Ding J, et al. Identifying heteroatomic and defective sites in carbon with dual-ion adsorption capability for high energy and power zinc ion capacitor. Nano-Micro Lett. 2021;13(1):59.
  • Lu Y, Li Z, Bai Z, et al. High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode. Nano Energy. 2019;66:104132.
  • Zheng Y, Zhao W, Jia D, et al. Porous carbon prepared via combustion and acid treatment as flexible zinc-ion capacitor electrode material. Chem Eng J. 2020;387:124161.
  • Yu P, Zeng Y, Zeng Y, et al. Achieving high-energy-density and ultra-stable zinc-ion hybrid supercapacitors by engineering hierarchical porous carbon architecture. Electrochim Acta. 2019;327:134999.
  • Zhu C, Fang G, Zhou J, et al. Binder-free stainless steel@Mn3O4nanoflower composite: a high-activity aqueous zinc-ion battery cathode with high-capacity and long-cycle-life. J Mater Chem A. 2018;6(20):9677–9683.
  • Wan F, Zhang Y, Zhang L, et al. Reversible oxygen redox chemistry in aqueous zinc-ion batteries. Angew Chem Int Ed. 2019;58(21):7062–7067.
  • Fang G, Liang S, Chen Z, et al. Simultaneous cationic and anionic redox reactions mechanism enabling high-rate long-life aqueous zinc-Ion battery. Adv Funct Mater. 2019;29(44):1905267.
  • Luo L-W, Zhang C, Wu X, et al. A Zn–S aqueous primary battery with high energy and flat discharge plateau. Chem Commun. 2021;57(77):9918–9921.
  • Li W, Ma Y, Li P, et al. Synergistic effect between S and Se enhancing the electrochemical behavior of SexSy in aqueous Zn metal batteries. Adv Funct Mater. 2021;31(20):2101237.
  • Zhang N, Cheng F, Liu J, et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat Commun. 2017;8(1):405.
  • Soundharrajan V, Sambandam B, Kim S, et al. Aqueous magnesium zinc hybrid battery: an advanced high-voltage and high-energy MgMn2O4Cathode. ACS Energy Lett. 2018;3(8):1998–2004.
  • Zhang N, Dong Y, Jia M, et al. Rechargeable aqueous Zn–V2O5battery with high energy density and long cycle life. ACS Energy Lett. 2018;3(6):1366–1372.
  • Zhang N, Jia M, Dong Y, et al. Hydrated layered vanadium oxide as a highly reversible cathode for rechargeable aqueous zinc batteries. Adv Funct Mater. 2019;29(10):1807331.
  • Xia C, Guo J, Li P, et al. Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angew Chem Int Ed. 2018;57(15):3943–3948.
  • Kundu D, Adams BD, Duffort V, et al. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat Energy. 2016;1(10):16119.
  • Yang Q, Mo F, Liu Z, et al. Activating C-coordinated iron of iron hexacyanoferrate for Zn hybrid-Ion batteries with 10 000-cycle lifespan and superior rate capability. Adv Mater. 2019;31(32):1901521.
  • Lee YG, An G-H. Synergistic effects of phosphorus and boron Co-incorporated activated carbon for ultrafast zinc-ion hybrid supercapacitors. ACS Appl Mater Interfaces. 2020;12(37):41342–41349.
  • Wu D, Ji C, Mi H, et al. A safe and robust dual-network hydrogel electrolyte coupled with multi-heteroatom doped carbon nanosheets for flexible quasi-solid-state zinc ion hybrid supercapacitors. Nanoscale. 2021;13(37):15869–15881.
  • Liu P, Liu W, Huang Y, et al. Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-Ion energy storage. Energy Storage Mater. 2020;25:858–865.
  • Zhu X, Guo F, Yang Q, et al. Boosting zinc-ion storage capability by engineering hierarchically porous nitrogen-doped carbon nanocage framework. J Power Sources. 2021;506:230224.
  • Li Z, Chen D, An Y, et al. Flexible and anti-freezing quasi-solid-state zinc ion hybrid supercapacitors based on pencil shavings derived porous carbon. Energy Storage Mater. 2020;28:307–314.
  • Li W, Jing X, Ma Y, et al. Phosphorus-doped carbon sheets decorated with SeS2 as a cathode for aqueous Zn-SeS2 battery. Chem Eng J. 2021;420:129920.
  • Bi S, Wu Y, Cao A, et al. Free-standing three-dimensional carbon nanotubes/amorphous MnO2 cathodes for aqueous zinc-ion batteries with superior rate performance. Mater Today Energy. 2020;18:100548.
  • Yin B, Zhang S, Ke K, et al. Binder-free V2O5/CNT paper electrode for high rate performance zinc ion battery. Nanoscale. 2019;11(42):19723–19728.
  • Yao Z, Cai D, Cui Z, et al. Strongly coupled zinc manganate nanodots and graphene composite as an advanced cathode material for aqueous zinc ion batteries. Ceram Int. 2020;46(8):11237–11245.
  • Chen L, Yang Z, Qin H, et al. Advanced electrochemical performance of ZnMn2O4/N-doped graphene hybrid as cathode material for zinc ion battery. J Power Sources. 2019;425:162–169.
  • Duan W, Zhao M, Li Y, et al. Excellent rate capability and cycling stability of novel H2V3O8 doped with graphene materials used in New aqueous zinc-ion batteries. Energy Fuels. 2020;34(3):3877–3886.
  • Pang Q, Sun C, Yu Y, et al. H2v3o8nanowire/graphene electrodes for aqueous rechargeable zinc Ion batteries with high rate capability and large capacity. Adv Energy Mater. 2018;8(19):1800144.
  • Luo H, Wang B, Wu F, et al. Synergistic nanostructure and heterointerface design propelled ultra-efficient in-situ self-transformation of zinc-ion battery cathodes with favorable kinetics. Nano Energy. 2021;81:105601.
  • Luo H, Wang B, Wang C, et al. Synergistic deficiency and heterojunction engineering boosted VO2 redox kinetics for aqueous zinc-ion batteries with superior comprehensive performance. Energy Storage Mater. 2020;33:390–398.
  • Yang C, Han M, Yan H, et al. In-situ probing phase evolution and electrochemical mechanism of ZnMn2O4 nanoparticles anchored on porous carbon polyhedrons in high-performance aqueous Zn-ion batteries. J Power Sources. 2020;452:227826.
  • Xu D, Li B, Wei C, et al. Preparation and characterization of MnO2/acid-treated CNT nanocomposites for energy storage with zinc ions. Electrochim Acta. 2014;133:254–261.
  • Dai X, Wan F, Zhang L, et al. Freestanding graphene/VO2 composite films for highly stable aqueous Zn-ion batteries with superior rate performance. Energy Storage Mater. 2019;17:143–150.
  • Zhang Y, Deng S, Pan G, et al. Introducing oxygen defects into phosphate ions intercalated manganese dioxide/vertical multilayer graphene arrays to boost flexible zinc Ion storage. Small Methods. 2020;4(6):1900828.
  • Zhang Y, Deng S, Li Y, et al. Anchoring MnO2 on nitrogen-doped porous carbon nanosheets as flexible arrays cathodes for advanced rechargeable Zn–MnO2 batteries. Energy Storage Mater. 2020;29:52–59.
  • Zhang H, Yao Z, Lan D, et al. N-doped carbon/V2O3 microfibers as high-rate and ultralong-life cathode for rechargeable aqueous zinc-ion batteries. J Alloy Compd. 2021;861:158560.
  • Wang S, Zhang S, Chen X, et al. Double–shell zinc manganate hollow microspheres embedded in carbon networks as cathode materials for high–performance aqueous zinc–ion batteries. J Colloid Interface Sci. 2020;580:528–539.
  • Deng S, Yuan Z, Tie Z, et al. Electrochemically induced metal–organic-framework-derived amorphous V2O5for superior rate aqueous zinc-Ion batteries. Angew Chem Int Ed. 2020;59(49):22002–22006.
  • Wu B, Zhang G, Yan M, et al. Graphene scroll-coated α-MnO2nanowires as high-performance cathode materials for aqueous Zn-Ion battery. Small. 2018;14(13):1703850.
  • Zhang W, Liang S, Fang G, et al. Ultra-High mass-loading cathode for aqueous zinc-ion battery based on graphene-wrapped aluminum vanadate nanobelts. Nano-Micro Lett. 2019;11(1):69.
  • Liu Y, Li Q, Ma K, et al. Graphene oxide wrapped CuV2O6nanobelts as high-capacity and long-life cathode materials of aqueous zinc-ion batteries. ACS Nano. 2019;13(10):12081–12089.
  • Islam S, Alfaruqi MH, Song J, et al. Carbon-coated manganese dioxide nanoparticles and their enhanced electrochemical properties for zinc-ion battery applications. J Mater Chem. 2017;26(4):815–819.
  • Bin D, Wang Y, Tamirat AG, et al. Stable high-voltage aqueous zinc battery based on carbon-coated NaVPO4F cathode. ACS Sustainable Chem Eng. 2021;9(8):3223–3231.
  • Zhai X-Z, Qu J, Wang J, et al. Diffusion-driven fabrication of yolk-shell structured K-birnessite@mesoporous carbon nanospheres with rich oxygen vacancies for high-energy and high-power zinc-ion batteries. Energy Storage Mater. 2021;42:753–763.
  • Wang C, Wang M, Liu L, et al. 3D porous sponge-inspired electrode for high-energy and high-power zinc-ion batteries. ACS Appl Energy Mater. 2021;4(2):1833–1839.
  • Wu W, Wang S, Zhang C, et al. Facile and scalable synthesis of 3D structures of V10O24·12H2O nanosheets coated with carbon toward ultrafast and ultrastable zinc storage. ACS Appl Mater Interfaces. 2021;13(16):18704–18712.
  • Xu H, Du Y, Emin A, et al. Interconnected vertical δ-MnO2nanoflakes coated by a dopamine-derived carbon thin shell as a high-performance self-supporting cathode for aqueous zinc Ion batteries. J Electrochem Soc. 2021;168(3):0030540.
  • Chen L, Yang Z, Qin H, et al. Graphene-wrapped hollow ZnMn2O4 microspheres for high-performance cathode materials of aqueous zinc ion batteries. Electrochim Acta. 2019;317:155–163.
  • Zhang X, Pei Z, Wang C, et al. Flexible zinc-ion hybrid fiber capacitors with ultrahigh energy density and long cycling life for wearable electronics. Small. 2019;15(47):1903817.
  • Zhuang J, Wei F, Zou H, et al. Oxygen-rich lotus-shaped porous carbon cathode for high areal capacity zinc ion hybrid capacitors. Mater Lett. 2022;313:131737.
  • Yu P, Zeng Y, Cao Q, et al. Liquid–liquid micromixing strategy enables low KOH-amount synthesis of ultrahighly porous carbon for zinc-ion storage. SN Appl Sci. 2020;2(5):829.
  • Wei F, Zhang H, Wang J, et al. N, N, S co-doped porous carbons with well-developed pores for supercapacitor and zinc ion hybrid capacitor. J Alloy Compd. 2022;907:164536.
  • Han L, Huang H, Li J, et al. Novel zinc–iodine hybrid supercapacitors with a redox iodide ion electrolyte and B, N dual-doped carbon electrode exhibit boosted energy density. J Mater Chem A. 2019;7(42):24400–24407.
  • Li Y, Yang W, Yang W, et al. Towards high-energy and anti-self-discharge Zn-Ion hybrid supercapacitors with New understanding of the electrochemistry. Nano-Micro Lett. 2021;13(1):95.
  • Li X, Li Y, Zhao X, et al. Elucidating the charge storage mechanism of high-performance vertical graphene cathodes for zinc-ion hybrid supercapacitors. Energy Storage Mater. 2022;53:505–513.
  • Pan Z, Lu Z, Xu L, et al. A robust 2D porous carbon nanoflake cathode for high energy-power density Zn-ion hybrid supercapacitor applications. Appl Surf Sci. 2020;510:145384.
  • Wang D, Pan Z, Lu Z. From starch to porous carbon nanosheets: promising cathodes for high-performance aqueous Zn-ion hybrid supercapacitors. Microporous Mesoporous Mater. 2020;306:110445.
  • Lou G, Pei G, Wu Y, et al. Combustion conversion of wood to N, O co-doped 2D carbon nanosheets for zinc-ion hybrid supercapacitors. Chem Eng J. 2021;413:127502.
  • Shang P, Liu M, Mei Y, et al. Urea-mediated monoliths made of nitrogen-enriched mesoporous carbon nanosheets for high-performance aqueous zinc Ion hybrid capacitors. Small. 2022;18(16):2108057.
  • Largeot C, Portet C, Chmiola J, et al. Relation between the Ion size and pore size for an electric double-layer capacitor. J Am Chem Soc. 2008;130(9):2730–2731.
  • Nightingale ER. Phenomenological theory of Ion solvation. effective radii of hydrated ions. J Phys Chem. 1959;63(9):1381–1387.
  • Persson I. Hydrated metal ions in aqueous solution: how regular are their structures? Pure Appl Chem. 2010;82(10):1901–1917.
  • Khuyen NQ, Zondaka Z, Harjo M, et al. Comparative analysis of fluorinated anions for polypyrrole linear actuator electrolytes. Polymers (Basel). 2019;11(5):849.
  • Zeng J, Dong L, Sun L, et al. Printable zinc-ion hybrid micro-capacitors for flexible self-powered integrated units. Nano-Micro Lett. 2021;13(1):19.
  • Marcus Y. Ionic radii in aqueous solutions. Chem Rev. 1988;88(8):1475–1498.
  • Liu P, Chen Y, Xiang H, et al. Benefitting from synergistic effect of anion and cation in antimony acetate for stable CH3NH3PbI3-based perovskite solar cell with efficiency beyond 21%. Small. 2021;17(46):2102186.
  • Asakawa T, Kubode H, Ozawa T, et al. Micellar counterion binding probed by fluorescence quenching of 6-methoxy-N-(3-sulfopropyl)quinolinium. J Oleo Sci. 2005;54(10):545–552.
  • Amiri A, Naraghi M, Polycarpou AA. Zinc-ion hybrid supercapacitors with ultrahigh areal and gravimetric energy densities and long cycling life. J Mater Chem. 2022;70:480–491.
  • Wang L, Huang M, Huang J, et al. Coupling of EDLC and the reversible redox reaction: oxygen functionalized porous carbon nanosheets for zinc-ion hybrid supercapacitors. J Mater Chem A. 2021;9(27):15404–15414.
  • Zhang X, Zhang Y, Qian J, et al. Synergistic effects of B/S co-doped spongy-like hierarchically porous carbon for a high performance zinc-ion hybrid capacitor. Nanoscale. 2022;14(5):2004–2012.
  • Li X, Li Y, Xie S, et al. Zinc-based energy storage with functionalized carbon nanotube/polyaniline nanocomposite cathodes. Chem Eng J. 2022;427:131799.
  • Chen S, Yang G, Zhao X, et al. Hollow mesoporous carbon spheres for high performance symmetrical and aqueous zinc-ion hybrid supercapacitor. Front Chem. 2020;8:663.
  • Zhao Y, Hao H, Song T, et al. High energy-power density Zn-ion hybrid supercapacitors with N/P co-doped graphene cathode. J Power Sources. 2022;521:230941.
  • Lu Y, Zhang H, Liu H, et al. Electrolyte dynamics engineering for flexible fiber-shaped aqueous zinc-ion battery with ultralong stability. Nano Lett. 2021;21(22):9651–9660.
  • Ma Y, Qi Y, Niu Y, et al. A distinctive conversion mechanism for reversible zinc ion storage. Inorg Chem Front. 2022;9(11):2706–2713.