1,563
Views
1
CrossRef citations to date
0
Altmetric
Original Reports

Toward strength-ductility synergy in trimodal grain structured metal composites by actively tuning coarse domains

, , , , , , & show all
Pages 462-470 | Received 05 Dec 2022, Published online: 02 Mar 2023

References

  • Ma E, Zhu T. Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals. Mater Today. 2017;20(6):323–331.
  • Sathiyamoorthi P, Kim HS. High-entropy alloys with heterogeneous microstructure: processing and mechanical properties. Prog Mater Sci. 2022;123:100709.
  • Zhu Y, Ameyama K, Anderson PM, et al. Heterostructured materials: superior properties from hetero-zone interaction. Mater Res Lett. 2021;9(1):1–31.
  • Wu X, Zhu Y. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Lett. 2017;5(8):527–532.
  • Mao D, Meng X, Xie Y, et al. Back stress dynamic balancing strategy enabled strength-ductility synergy in heterostructured Al-SiC composites. Sci China Mater. 2022. doi:10.1007/s40843-022-2271-2
  • Huang CX, Wang YF, Ma XL, et al. Interface affected zone for optimal strength and ductility in heterogeneous laminate. Mater Today. 2018;21(7):713–719.
  • Yang M, Pan Y, Yuan F, et al. Back stress strengthening and strain hardening in gradient structure. Mater Res Lett, 831 (2016) 145–151.
  • Fang XT, He GZ, Zheng C, et al. Effect of heterostructure and hetero-deformation induced hardening on the strength and ductility of brass. Acta Mater. 2020;186:644–655.
  • Li J, Zhang Q, Huang R, et al. Towards understanding the structure–property relationships of heterogeneous-structured materials. Scripta Mater. 2020;186:304–311.
  • Fu W, Li H, Huang Y, et al. A new strategy to overcome the strength-ductility trade off of high entropy alloy. Scripta Mater. 2022;214:114678.
  • Jeong SG, Karthik GM, Kim ES, et al. Architectured heterogeneous alloys with selective laser melting. Scripta Mater. 2022;208:114332.
  • Wang G, Ouyang H, Su Y, et al. Heterostructured bulk aluminum with controllable gradient structure: fabrication strategy and deformation mechanisms. Scripta Mater. 2021;196:113762.
  • Wu XL, Yang MX, Yuan FP, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc Natl Acad Sci USA. 2015;112(47):14501–14505.
  • Yang M, Yan D, Yuan F, et al. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength. Proc Natl Acad Sci USA. 2018;115(28):7224–7229.
  • Su J, Raabe D, Li Z. Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy. Acta Mater. 2019;163:40–54.
  • Wang Y, Zhu Y, Yu Z, et al. Hetero-zone boundary affected region: A primary microstructural factor controlling extra work hardening in heterostructure. Acta Mater. 2022;241:118395.
  • Shi PJ, Li RG, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys. Science. 2021;373(6557):912–918.
  • Fu X, Tan Z, Min X, et al. Trimodal grain structure enables high-strength CNT/Al-Cu-Mg composites higher ductility by powder assembly & alloying. Mater Res Lett. 2021;9(1):50–57.
  • Fu X, Tan Z, Ma Z, et al. Powder assembly & alloying to CNT/Al–Cu–Mg composites with trimodal grain structure and strength-ductility synergy. Compos B Eng. 2021;225:109271.
  • Xie Y, Meng X, Chang Y, et al. Ameliorating strength-ductility efficiency of graphene nanoplatelet-reinforced aluminum composites via deformation-driven metallurgy. Compos Sci Technol. 2022;219:109225.
  • Deng CF, Zhang XX, Wang DZ, et al. Preparation and characterization of carbon nanotubes/aluminum matrix composites. Mater Lett. 2007;61(8-9):1725–1728.
  • Liu ZY, Xiao BL, Wang WG, et al. Developing high-performance aluminum matrix composites with directionally aligned carbon nanotubes by combining friction stir processing and subsequent rolling. Carbon. 2013;62:35–42.
  • Nam DH, Kim YK, Cha SI, et al. Effect of CNTs on precipitation hardening behavior of CNT/Al–Cu composites. Carbon. 2012;50(13):4809–4814.
  • Meng X, Liu T, Shi C, et al. Synergistic effect of CNTs reinforcement and precipitation hardening in in-situ CNTs/Al–Cu composites. Mater Sci Eng A. 2015;633:103–111.
  • Shin S, Moon S, Lee D, et al. Development of press-and-sinter Al2024-based nanocomposites reinforced with multiwalled carbon nanotubes. J Compos Mater. 2016;50(26):3619–3625.
  • Liu ZY, Ma K, Fan GH, et al. Enhancement of the strength-ductility relationship for carbon nanotube/Al–Cu–Mg nanocomposites by material parameter optimisation. Carbon. 2020;157:602–613.
  • Choi HJ, Min BH, Shin JH, et al. Strengthening in nanostructured 2024 aluminum alloy and its composites containing carbon nanotubes. Compos A Appl Sci Manuf. 2011;42(10):1438–1444.
  • Nam DH, Cha SI, Lim BK, et al. Synergistic strengthening by load transfer mechanism and grain refinement of CNT/Al–Cu composites. Carbon. 2012;50(7):2417–2423.
  • Liu ZY, Xiao BL, Wang WG, et al. Modelling of carbon nanotube dispersion and strengthening mechanisms in Al matrix composites prepared by high energy ball milling-powder metallurgy method. Compos A Appl Sci Manuf. 2017;94:189–198.
  • Liu ZY, Xiao BL, Wang WG, et al. Analysis of carbon nanotube shortening and composite strengthening in carbon nanotube/aluminum composites fabricated by multi-pass friction stir processing. Carbon. 2014;69:264–274.
  • He T, He X, Tang P, et al. The use of cryogenic milling to prepare high performance Al2009 matrix composites with dispersive carbon nanotubes. Mater Design. 2017;114:373–382.
  • Ma K, Liu ZY, Liu BS, et al. Improving ductility of bimodal carbon nanotube/2009Al composites by optimizing coarse grain microstructure via hot extrusion. Compos A Appl Sci Manuf. 2021;140:106198.
  • Li Z, Wang H, Guo Q, et al. Regain strain-hardening in high-strength metals by nanofiller incorporation at grain boundaries. Nano Lett. 2018;18(10):6255–6264.
  • Khan AS, Farrokh B, Takacs L. Effect of grain refinement on mechanical properties of ball-milled bulk aluminum. Mater Sci Eng A. 2008;489(1-2):77–84.
  • Hayes RW, Witkin D, Zhou F, et al. Deformation and activation volumes of cryomilled ultrafine-grained aluminum. Acta Mater. 2004;52(14):4259–4271.
  • Wu H, Fan G, Huang M, et al. Deformation behavior of brittle/ductile multilayered composites under interface constraint effect. Int J Plasticity. 2017;89:96–109.
  • Anderson TL. Fracture mechanics: fundamentals and applications. Boca Raton: CRC press; 2017.
  • Bucci RJ. Selecting aluminum alloys to resist failure by fracture mechanisms. Eng Fract Mech. 1979;12(3):407–441.