2,276
Views
0
CrossRef citations to date
0
Altmetric
Original Reports

Low modulus Ti-rich biocompatible TiNbZrTaHf concentrated alloys with exceptional plasticity

, , , , , , & ORCID Icon show all
Pages 604-612 | Received 15 Feb 2023, Published online: 18 Apr 2023

References

  • Li J, Qin L, Yang K, et al. Materials evolution of bone plates for internal fixation of bone fractures: A review. J Mater Sci Technol. 2020;36:190–208. doi:10.1016/j.jmst.2019.07.024.
  • Batalha RL, Batalha WC, Deng L, et al. Processing a biocompatible Ti–35Nb–7Zr–5Ta alloy by selective laser melting. J Mater Res. 2020;35(9):1143–1153. doi:10.1557/jmr.2020.90.
  • Rack HJ, Qazi JI. Titanium alloys for biomedical applications. Mater Sci Eng: C. 2006;26(8):1269–1277. doi:10.1016/j.msec.2005.08.032.
  • Luo JP, Sun JF, Huang YJ, et al. Low-modulus biomedical Ti-30Nb-5Ta-3Zr additively manufactured by Selective Laser Melting and its biocompatibility. Mater Sci Eng C Mater Biol Appl. 2019;97:275–284. doi:10.1016/j.msec.2018.11.077.
  • Luo X, Liu LH, Yang C, et al. Overcoming the strength–ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy. J Mater Sci Technol. 2021;68:112–123. doi:10.1016/j.jmst.2020.06.053.
  • Luo X, Yang C, Li RY, et al. Effect of silicon content on the microstructure evolution, mechanical properties, and biocompatibility of β-type TiNbZrTa alloys fabricated by laser powder bed fusion. Biomater Adv. 2022;133:112625.
  • George EP, Raabe D, Ritchie RO. High-entropy alloys. Nat Rev Mater. 2019;4:515–534.
  • George EP, Curtin WA, Tasan CC. High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta Mater. 2020;188:435–474. doi:10.1016/j.actamat.2019.12.015.
  • Li W, Xie D, Li D, et al. Mechanical behavior of high-entropy alloys. Prog Mater Sci. 2021;118:100777.
  • Hori T, Nagase T, Todai M, et al. Development of non-equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials. Scripta Mater. 2019;172:83–87. doi:10.1016/j.scriptamat.2019.07.011.
  • Todai M, Nagase T, Hori T, et al. Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials. Scripta Mater. 2017;129:65–68.
  • Yuan Y, Wu Y, Yang Z, et al. Formation, structure and properties of biocompatible TiZrHfNbTa high-entropy alloys. Mater Res Lett. 2019;7:225–231. doi:10.1080/21663831.2019.1584592.
  • Bu Y, Wu Y, Lei Z, et al. Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys. Mater Today. 2021;46:28–34. doi:10.1016/j.mattod.2021.02.022.
  • Senkov ON, Scott JM, Senkova SV, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J Alloy Compd. 2011;509:6043–6048. doi:10.1016/j.jallcom.2011.02.171.
  • Seol JB, Ko W-S, Sohn SS, et al. Mechanically derived short-range order and its impact on the multi-principal-element alloys. Nat Commun. 2022;13(1):6766. doi:10.1038/s41467-022-34470-8.
  • Huang X, Liu L, Duan X, et al. Atomistic simulation of chemical short-range order in HfNbTaZr high entropy alloy based on a newly-developed interatomic potential. Mater Des. 2021;202:109560.
  • Yin S, Zuo Y, Abu-Odeh A, et al. Atomistic simulations of dislocation mobility in refractory high-entropy alloys and the effect of chemical short-range order. Nat Commun. 2021;12:4873.
  • Yin YZ, Lu Y, Zhang TP, et al. Nanoindentation avalanches and dislocation structures in HfNbTiZr high entropy alloy. Scripta Mater. 2023;227:115312. doi:10.1016/j.scriptamat.2023.115312..
  • Zhang B, Ding J, Ma E. Chemical short-range order in body-centered-cubic TiZrHfNb high-entropy alloys. Appl Phys Lett. 2021;119(20):201908. doi:10.1063/5.0069417.
  • Xun K, Zhang B, Wang Q, et al. Local chemical inhomogeneities in TiZrNb-based refractory high-entropy alloys. J Mater Sci Technol. 2023;135:221–230. doi:10.1016/j.jmst.2022.06.047.
  • Marteleur M, Fan S, Gloriant T, et al. On the design of new β-metastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects. Scripta Mater. 2012;66:749–752. doi:10.1016/j.scriptamat.2012.01.049.
  • Senkov ON, Pilchak AL, Semiatin SL. Effect of cold deformation and annealing on the microstructure and tensile properties of a HfNbTaTiZr refractory high entropy alloy. Metall Mater Trans A. 2018;49:2876–2892. doi:10.1007/s11661-018-4646-8.
  • Stráský J, Harcuba P, Václavová K, et al. Increasing strength of a biomedical Ti-Nb-Ta-Zr alloy by alloying with Fe, Si and O. J Mech Behav Biomed Mater. 2017;71:329–336. doi:10.1016/j.jmbbm.2017.03.026.
  • Elias LM, Schneider SG, Schneider S, et al. Microstructural and mechanical characterization of biomedical Ti–Nb–Zr (–Ta) alloys. Mater Sci Eng A. 2006;432(1-2):108–112. doi:10.1016/j.msea.2006.06.013.
  • Guo W, Quadir MZ, Moricca S, et al. Microstructural evolution and final properties of a cold-swaged multifunctional Ti–Nb–Ta–Zr–O alloy produced by a powder metallurgy route. Mater Sci Eng A. 2013;575:206–216. doi:10.1016/j.msea.2013.03.029.
  • Talling RJ, Dashwood RJ, Jackson M, et al. Determination of (C11-C12) in Ti–36Nb–2Ta–3Zr–0.3 O (wt.%)(Gum metal). Scripta Mater. 2008;59(6):669–672. doi:10.1016/j.scriptamat.2008.05.022.
  • Xu YF, Yi DQ, Liu HQ, et al. Effects of cold deformation on microstructure, texture evolution and mechanical properties of Ti–Nb–Ta–Zr–Fe alloy for biomedical applications. Mater Sci Eng A. 2012;547:64–71. doi:10.1016/j.msea.2012.03.081.
  • Plaine AH, Silva M, Bolfarini C. Tailoring the microstructure and mechanical properties of metastable Ti–29Nb–13Ta-4.6Zr alloy for self-expansible stent applications. J Alloy Compd. 2019;800:35–40. doi:10.1016/j.jallcom.2019.06.049.
  • Niinomi M. Mechanical properties of biomedical titanium alloys. Mater Sci Eng A. 1998;243(1–2):231–236. doi:10.1016/S0921-5093(97)00806-X.
  • Zhang LC, Chen LY. A review on biomedical titanium alloys: recent progress and prospect. Adv Eng Mater. 2019;21(4):1801215. doi:10.1002/adem.201801215.
  • Niinomi M, Nakai M. Titanium-based biomaterials for preventing stress shielding between implant devices and bone. Int J Biomater. 2011;2011:836587. doi:10.1155/2011/836587.
  • Qazi J I, Rack H J, Marquardt B. High-strength metastable beta-titanium alloys for biomedical applications. JOM. 2004;56:49–51. doi:10.1007/s11837-004-0253-9.
  • Kopova I, Stráský J, Harcuba P, et al. Newly developed Ti–Nb–Zr–Ta–Si–Fe biomedical beta titanium alloys with increased strength and enhanced biocompatibility. Mater Sci Eng C. 2016;60:230–238. doi:10.1016/j.msec.2015.11.043.
  • Li Z, Zheng B, Wang Y, et al. Ultrafine-grained Ti–Nb–Ta–Zr alloy produced by ECAP at room temperature. J Mater Sci. 2014;49:6656–6666. doi:10.1007/s10853-014-8337-6.
  • Li Q, Niinomi M, Hieda J, et al. Deformation-induced ω phase in modified Ti–29Nb–13Ta–4.6 Zr alloy by Cr addition. Acta Biomater. 2013;9(8):8027–8035. doi:10.1016/j.actbio.2013.04.032.
  • Huang H, Wu Y, He J, et al. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering. Adv Mater. 2017;29(30):1701678. doi:10.1002/adma.201701678.
  • Senkov O N, Semiatin S L. Microstructure and properties of a refractory high-entropy alloy after cold working. J Alloy Compd. 2015;649:1110–1123. doi:10.1016/j.jallcom.2015.07.209.
  • Lei Z, Liu X, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature. 2018;563(7732):546–550.
  • Juan C C, Tsai M H, Tsai C W, et al. Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining. Mater Lett. 2016;184:200–203. doi:10.1016/j.matlet.2016.08.060.
  • Wu YD, Cai YH, Wang T, et al. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties. Mater Lett. 2014;130:277–280. doi:10.1016/j.matlet.2014.05.134.
  • Lilensten L, Couzinié J P, Bourgon J, et al. Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity. Mater Res Lett. 2017;5(2):110–116. doi:10.1080/21663831.2016.1221861.
  • Ikehata H, Nagasako N, Furuta T, et al. First-principles calculations for development of low elastic modulus Ti alloys. Phys Rev B. 2004;70:174113.
  • Abdel-Hady M, Hinoshita K, Morinaga M. General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters. Scripta Mater. 2006;55:477–480. doi:10.1016/j.scriptamat.2006.04.022.
  • Sheikh S, Shafeie S, Hu Q, et al. Alloy design for intrinsically ductile refractory high-entropy alloys. J Appl Phys. 2016;120(16):164902. doi:10.1063/1.4966659.
  • Li H, Zhou F, Li L, et al. Design and development of novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility. Sci Rep. 2016;6:1–10. doi:10.1038/s41598-016-0001-8.
  • Taniguchi S, Tebble R, Williams D. The magnetic susceptibilities of some transition metal alloys and the corresponding density of states curves. Proc Royal Soc Lond Series: A Math Phys Sci. 1962;265:502–518.
  • Diao HY, Feng R, Dahmen KA, et al. Fundamental deformation behavior in high-entropy alloys: An overview. Curr Opin Solid St M. 2017;21:252–266. doi:10.1016/j.cossms.2017.08.003.
  • Wen X, Huang H, Wu H, et al. Enhanced plastic deformation capacity in hexagonal-close-packed medium entropy alloys via facilitating cross slip. J Mater Sci Technol. 2023;134:1–10. doi:10.1016/j.jmst.2022.05.059.
  • Taylor GI. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc Royal Soc Lond Series: A Math Phys Sci. 1950;201:192–196.
  • Liu L, Ma J, Yu C, et al. Determination of forming ability of high pressure die casting for Zr-based metallic glass. J Mater Process Tech. 2017;244:87–96. doi:10.1016/j.jmatprotec.2017.01.015.
  • Conley K, Gu W, Ritter J, et al. Observations on finger-like crack growth at a urethane acrylate/glass interface. J Adhesion. 1992;39:173–184. doi:10.1080/00218469208030461.
  • Harth K, Eremin A, Stannarius R. A gallery of meniscus patterns of free-standing smectic films. Ferroelectrics. 2012;431:59–73. doi:10.1080/00150193.2012.684630.
  • Choisez L, Ding L, Marteleur M, et al. High temperature rise dominated cracking mechanisms in ultra-ductile and tough titanium alloy. Nat Commun. 2020;11:2110. doi:10.1038/s41467-020-15772-1.
  • Zhou X, He S, Marian J. Cross-kinks control screw dislocation strength in equiatomic bcc refractory alloys. Acta Mater. 2021;211:116875.
  • Kamikawa N, Abe Y, Miyamoto G, et al. Tensile behavior of Ti, Mo-added low carbon steels with interphase precipitation. Isij Int. 2014;54:212–221. doi:10.2355/isijinternational.54.212.
  • Liu L, Yang C, Wang F, et al. Ultrafine grained Ti-based composites with ultrahigh strength and ductility achieved by equiaxing microstructure. Mater Des. 2015;79:1–5. doi:10.1016/j.matdes.2015.04.032.
  • Mak E, Yin B, Curtin WA. A ductility criterion for bcc high entropy alloys. J Mech Phys Solids. 2021;152:104389.
  • Hu YJ, Sundar A, Ogata S, et al. Screening of generalized stacking fault energies, surface energies and intrinsic ductile potency of refractory multicomponent alloys. Acta Mater. 2021;210:116800.
  • Chan KS. A computational approach to designing ductile Nb-Ti-Cr-Al solid-solution alloys. Metall Mater Trans A. 2001;32:2475–2487. doi:10.1007/s11661-001-0037-6.