1,268
Views
0
CrossRef citations to date
0
Altmetric
Report

Creep-induced heterogeneous precipitation of Laves phase with two morphologies in tempered martensite ferritic steels

, , ORCID Icon, , , , , , , & show all
Pages 630-637 | Received 23 Feb 2023, Published online: 06 May 2023

References

  • Basirat M, Shrestha T, Potirniche GP, et al. A study of the creep behavior of modified 9Cr-1Mo steel using continuum-damage modeling. Int. J. Plast. 2012;37:95–107.
  • Mishnev R, Dudova N, Kaibyshev R. On the origin of the superior long-term creep resistance of a 10% Cr steel. Mater Sci Eng A. 2018;713:161–173.
  • Xiao B, Luan JH, Zhao SJ, et al. Achieving thermally stable nanoparticles in chemically complex alloys via controllable sluggish lattice diffusion. Nat. Commun. 2022;13:4870.
  • Aghajani A, Somsen C, Eggeler G. On the effect of long-term creep on the microstructure of a 12% chromium tempered martensite ferritic steel. Acta Mater. 2009;57:5093–5106.
  • Chatterjee A, Ghosh A, Moitra A, et al. Role of hierarchical martensitic microstructure on localized deformation and fracture of 9Cr-1Mo steel under impact loading at different temperatures. Inter. J. Plast. 2018;104:104–133.
  • Oruganti R, Karadge M, Swaminathan S. Damage mechanics-based creep model for 9-10%Cr ferritic steels. Acta Mater. 2011;59:2145–2155.
  • Wu DL, Xuan FZ, Guo SJ, et al. Uniaxial mean stress relaxation of 9-12% Cr steel at high temperature: Experiments and viscoplastic constitutive modeling. Int. J. Plast. 2016;77:156–173.
  • Zhao JF, Gong JD, Saboo A, et al. Dislocation-based modeling of long-term creep behaviors of Grade 91 steels. Acta Mater. 2018;149:19–28.
  • Xiao B, Xu LY, Cayron C, et al. Solute-dislocation interactions and creep-enhanced Cu precipitation in a novel ferritic-martensitic steel. Acta Mater. 2020;195:199–208.
  • Kipelova A, Kaibyshev R, Belyakov A, et al. Microstructure evolution in a 3%Co modified P911 heat resistant steel under tempering and creep conditions. Mater Sci Eng A. 2011;528:1280–1286.
  • Cui HR, Sun F, Chen K, et al. Precipitation behavior of Laves phase in 10%Cr steel X12CrMoWVNbN10-1-1 during short-term creep exposure. Mater Sci Eng A. 2010;527:7505–7509.
  • Zhu S, Yang M, Song XL, et al. Characterisation of Laves phase precipitation and its correlation to creep rupture strength of ferritic steels. Mater. Charact. 2014;98:60–65.
  • Maddi L, Deshmukh GS, Ballal AR, et al. Effect of Laves phase on the creep rupture properties of P92 steel. Mater Sci Eng A. 2016;668:215–223.
  • Saini N, Mulik RS, Mahapatra MM. Study on the effect of ageing on Laves phase evolution and their effect on mechanical properties of P92 steel. Mater Sci Eng A. 2018;716:179–188.
  • Dimmler G, Weinert P, Kozeschnik E, et al. Quantification of the Laves phase in advanced 9-12% Cr steels using a standard SEM. Mater. Charact. 2003;51:341–352.
  • Jang TJ, Choi WS, Kim DW, et al. Shear band-driven precipitate dispersion for ultrastrong ductile medium-entropy alloys. Nat. Commun. 2021;12:4703.
  • Miyahara K, Hwang JH, Shimoide Y. Aging phenomena before the precipitation of the bulky Laves phase in Fe-10%Cr ferritic alloys. Scripta Mater. 1995;32:1917–1921.
  • Prat O, Garcia J, Rojas D, et al. The role of Laves phase on microstructure evolution and creep strength of novel 9%Cr heat resistant steels. Intermetallics. 2013;32:362–372.
  • Zhang XZ, Wu XJ, Liu R, et al. Influence of Laves phase on creep strength of modified 9Cr-1Mo steel. Mater Sci Eng A. 2017;706:279–286.
  • Xu YT, Nie YH, Wang MJ, et al. The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging. Acta Mater. 2017;131:110–122.
  • Tsuchida Y, Okamoto K, Tokunaga Y. Improvement of creep rupture strength of high Cr ferritic steel by addition of W. ISIJ Inter. 1995;35:317–323.
  • Zhang KQ. Therodynamic and kinetic calculation and optimization of precipitates in martensitic heat-resistant stainless steel. Liao Ning: University of Science and Technology Liaoning. 2018.
  • Isik MI, Kostka A, Eggeler G. On the nucleation of Laves phase particles during high-temperature exposure and creep of tempered martensite ferritic steels. Acta Mater. 2014;81:230–240.
  • Xiao B, Xu LY, Tang ZX, et al. A physical-based yield strength model for the microstructural degradation of G115 steel during long-term creep. Mater Sci Eng A. 2019;747:161–176.
  • Fedorova I, Belyakov A, Kozlov P, et al. Laves-phase precipitates in a low-carbon 9% Cr martensitic steel during aging and creep at 923 K. Mater Sci Eng A. 2014;615:153–163.
  • Abe F, Araki H, Noda T. The effect of tungsten on dislocation recovery and precipitation behavior of low-activation martensitic 9Cr steels. Metall Trans A 1991;22:2225–2235.
  • Chai YW, Kato K, Yabu C, et al. Disconnections and Laves (C14) precipitation in high-Cr ferritic stainless steels. Acta Mater. 2020;198:230–241.
  • Li Q. Precipitation of Fe2W Laves phase and modeling of its direct influence on the strength of a 12Cr-2W steel. Metall Mater Trans A 2006;37:89–97.
  • Sawatani T, Minamino S, Morikawa H. Effect of Laves phase on the properties of Ti and Nb stabilized low C, N-19%Cr-2%Mo stainless steel sheets. Trans. ISIJ. 1982;22:172–180.
  • Yamamoto K, Kimura Y, Mishima Y. Effect of matrix substructures on precipitation of the Laves phase in Fe-Cr-Nb-Ni system. ISIJ Inter. 2003;43:1253–1259.
  • Zhang JY, Xu LY, Han YD, et al. New perspectives on the grain boundary misorientation angle dependent intergranular corrosion of polycrystalline nickel-based 625 alloy. Corros. Sci. 2020;172:108718.
  • Takahashi J, Kawakami K, Kawasaki K. Study on complex precipitation kinetics in Cr- and Cu-added nitriding steels by atom probe tomography. Acta Mater. 2019;169:88–98.
  • Shen C, Simmons JP, Wang Y. Effect of elastic interaction on nucleation: I. Calculation of the strain energy of nucleus formation in an elastically anisotropic crystal of arbitrary microstructure. Acta Mater. 2006;54:5617–5630.
  • Ku BS, Yu J. Effects of Cu addition on the creep rupture properties of a 12% Cr steel. Scr. Mater. 2001;45:205–211.
  • Lifshitz IM, Slyozov VV. The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids. 1961;19:35–50.
  • Xu SS, Liu YW, Zhang Y, et al. Precipitation kinetics and mechanical properties of nanostructured steels with Mo additions. Mater. Res. Let. 2020;8:187–194.
  • Ardell AJ. Trans-interface-diffusion-controlled coarsening in ternary alloys. Acta Mater. 2013;61:7749–7754.
  • Zhao YL, Yang T, Han B, et al. Exceptional nanostructure stability and its origins in the CoCrNi-based precipitation-strengthened medium-entropy alloy. Mater. Res. Let. 2019;7:152–158.
  • Maruyama K, Sawada K, Koike J. Advances in physical metallurgy and processing of steels. strengthening mechanisms of creep resistant tempered martensitic steel.. ISIJ Inter. 2001;41:641–653.