718
Views
0
CrossRef citations to date
0
Altmetric
Report

In-situ study of rules of nanostructure evolution, severe plastic deformations, and friction under high pressure

, , , &
Pages 757-763 | Received 12 May 2023, Published online: 12 Jul 2023

References

  • Edalati K, Bachmaier A, Beloshenko VA, et al. Nanomaterials by severe plastic deformation: review of historical developments and recent advances. Mater Res Lett. 2022;10(4):163–256. doi:10.1080/21663831.2022.2029779
  • Zhilyaev AP, Langdon TG. Using high-pressure torsion for metal processing: Fundamentals and applications. Prog Mater Sci. 2008;53:893–979. doi:10.1016/j.pmatsci.2008.03.002
  • Pippan R, Scheriau S, Taylor A, et al. Saturation of fragmentation during severe plastic deformation. Annu Rev Mater Res. 2010;40:319–343. doi:10.1146/annurev-matsci-070909-104445
  • Cao Y, Ni S, Liao X, et al. Structural evolutions of metallic materials processed by severe plastic deformation. Mater Sci Eng R Rep. 2018;133:1–59. doi:10.1016/j.mser.2018.06.001
  • Valiev RZ, Estrin Y, Horita Z, et al. Producing bulk ultrafine-grained materials by severe plastic deformation. JOM. 2006;58:33–39. doi:10.1007/s11837-006-0213-7
  • Ovid'Ko IA, Valiev RZ, Zhu YT. Review on superior strength and enhanced ductility of metallic nanomaterials. Prog Mater Sci. 2018;94:462–540. doi:10.1016/j.pmatsci.2018.02.002
  • Valiev RZ, Estrin Y, Horita Z, et al. Producing bulk ultrafine-grained materials by severe plastic deformation: ten years later. JOM. 2016;68:1216–1226. doi:10.1007/s11837-016-1820-6
  • Zhu YT, Langdon TG. The fundamentals of nanostructured materials processed by severe plastic deformation. JOM. 2004;56(10):58–63. doi:10.1007/s11837-004-0294-0
  • Girard J, Amulele G, Farla R, et al. Shear deformation of bridgmanite and magnesiowüstite aggregates at lower mantle conditions. Science. 2016;351(6269):144–147. doi:10.1126/science.aad3113
  • Levitas VI. Resolving puzzles of the phase-transformation-based mechanism of the strong deep-focus earthquake. Nat Commun. 2022;13(1):6291. doi:10.1038/s41467-022-33802-y
  • Edalati K, Horita Z. Universal plot for hardness variation in pure metals processed by high-pressure torsion. Mater Trans. 2010;51:1051–1054. doi:10.2320/matertrans.M2009431
  • Edalati K, Horita Z, Yagi S, et al. Allotropic phase transformation of pure zirconium by high-pressure torsion. Mater Sci Eng A. 2009;523:277–281. doi:10.1016/j.msea.2009.07.029
  • Kerber MB, Spieckermann F, Schuster R, et al. In situ synchrotron X-Ray diffraction during high-pressure torsion deformation of Ni and NiTi. Adv Eng Mater. 2021;23:2100159. doi:10.1002/adem.202100159
  • Pandey KK, Levitas VI, Park C. Effect of the initial microstructure on the pressure-induced phase transition in Zr and microstructure evolution. 2023. 25 p. Located at: https://arxiv.org/abs/2301.10475.
  • Lin F, Hilairet N, Raterron P, et al. Elasto-viscoplastic self consistent modeling of the ambient temperature plastic behavior of periclase deformed up to 5.4 GPa. J Appl Phys. 2017;122:205902. doi:10.1063/1.4999951
  • Meade C, Jeanloz R. The strength of mantle silicates at high pressures and room temperature: implications for the viscosity of the mantle. Nature. 1990;348:533–535. doi:10.1038/348533a0
  • Meade C, Jeanloz R. Effect of a coordination change on the strength of amorphous SiO2. Science. 1988;241(4869):1072–1074. doi:10.1126/science.241.4869.1072
  • Levitas VI. Large deformation of materials with complex rheological properties at normal and high pressure. New York (NY): Nova Science; 1996.
  • Pandey KK, Levitas VI. In situ quantitative study of plastic strain-induced phase transformations under high pressure: Example for ultra-pure Zr. Acta Mater. 2020;196:338–346. doi:10.1016/j.actamat.2020.06.015
  • Levitas VI, Kamrani M, Feng B. Tensorial stress−strain fields and large elastoplasticity as well as friction in diamond anvil cell up to 400 GPa. NPJ Comput Mater. 2019;5(1):94), doi:10.1038/s41524-019-0234-8
  • Hammersley AP. FIT2D: an introduction and overview. European synchrotron radiation facility internal report ESRF97HA02 T 1997; 68:58.
  • Lutterotti L, Matthies S, Wenk HR, et al. Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J Appl Phys. 1997;81(2):594–600. doi:10.1063/1.364220
  • Williamson GK, Smallman RE. III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philos Mag. 1956;1(1):34–46. doi:10.1080/14786435608238074
  • Pérez-Prado MT, Zhilyaev AP. First experimental observation of shear induced hcp to bcc transformation in pure Zr. Phys Rev Lett. 2009;102(17):175504. doi:10.1103/PhysRevLett.102.175504
  • Levitas VI, Zarechnyy OM. Modeling and simulation of strain-induced phase transformations under compression in a diamond anvil cell. Phys Rev B. 2010;82(17):174123. doi:10.1103/PhysRevB.82.174123
  • Levitas VI, Dhar A, Pandey KK. Tensorial stress-plastic strain fields in α-ω Zr mixture, transformation kinetics, and friction in diamond anvil cell. 2023. 32 p. Located at: doi:10.48550/arXiv.2212.13000.
  • Voyiadjis GZ, Yaghoobi M. Size effects in plasticity: from macro to nano. Cambridge: Academic Press; 2019.
  • Edalati K, Matsubara E, Horita Z. Processing pure Ti by high-pressure torsion in wide ranges of pressures and strain. Metall Mater Trans A. 2009;40:2079–2086. doi:10.1007/s11661-009-9890-5
  • Zhilyaev AP, Nurislamova GV, Kim BK, et al. Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion. Acta Mater. 2003;51:753–765. doi:10.1016/S1359-6454(02)00466-4
  • Lee S, Edalati K, Horita Z. Microstructures and mechanical properties of pure V and Mo processed by high-pressure torsion. Mater Trans. 2010;51:1072–1079. doi:10.2320/matertrans.M2009375
  • Razumov IK, Yermakov AY, Gornostyrev YN, et al. Nonequilibrium phase transformations in alloys under severe plastic deformation. Phys-Usp. 2020;63(8):733. doi:10.3367/UFNe.2019.10.038671
  • Cao Y, Kawasaki M, Wang YB, et al. Unusual macroscopic shearing patterns observed in metals processed by high-pressure torsion. J Mater Sci. 2010;45:4545–4553. doi:10.1007/s10853-010-4485-5
  • Cao Y, Wang YB, Figueiredo RB, et al. Three-dimensional shear-strain patterns induced by high-pressure torsion and their impact on hardness evolution. Acta Mater. 2011;59:3903–3914. doi:10.1016/j.actamat.2011.03.015
  • Beygelzimer Y, Filippov A, Estrin Y. Turbulent’ shear flow of solids under high-pressure torsion. Philos Mag. 2023: 1–12.
  • Jenei Z, O’Bannon EF, Weir ST, et al. Single crystal toroidal diamond anvils for high pressure experiments beyond 5 megabar. Nat Commun. 2018;9(1):3563. doi:10.1038/s41467-018-06071-x
  • Ji C, Levitas VI, Zhu H, et al. Shear-induced phase transition of nanocrystalline hexagonal boron nitride to wurtzitic structure at room temperature and lower pressure. Proc Natl Acad Sci U S A. 2012;109(47):19108–19112. doi:10.1073/pnas.1214976109
  • Gao Y, Ma Y, An Q, et al. Shear driven formation of nano-diamonds at sub-gigapascals and 300 K. Carbon N Y. 2019;146:364–368.
  • Levitas VI. High-pressure phase transformations under severe plastic deformation by torsion in rotational anvils. Mater Trans. 2019;60(7):1294–1301. doi:10.2320/matertrans.MF201923