982
Views
0
CrossRef citations to date
0
Altmetric
Report

Simultaneously improving mechanical and magnetic properties through heterogeneous lamella structures in a superalloy-like, soft magnetic complex concentrated alloy

& ORCID Icon
Pages 749-756 | Received 24 Apr 2023, Published online: 11 Jul 2023

References

  • Xiong W, Guo AXY, Zhan S, et al. Refractory high-entropy alloys: a focused review of preparation methods and properties. J Mater Sci Technol. 2023;142:196–215. doi:10.1016/j.jmst.2022.08.046
  • Hua XJ, Hu P, Xing HR, et al. Development and property tuning of refractory high-entropy alloys: a review. Acta Metall Sin (Engl Lett). 2022;35:1231–1265. doi:10.1007/s40195-022-01382-x
  • George EP, Curtin WA, Tasan CC. High entropy alloys: a focused review of mechanical properties and deformation mechanisms. Acta Mater. 2020;188:435–474. doi:10.1016/j.actamat.2019.12.015
  • Chang YJ, Yeh AC. The evolution of microstructures and high temperature properties of AlxCo1.5CrFeNi1.5Tiy high entropy alloys. J Alloys Compd. 2015;653:379–385. doi:10.1016/j.jallcom.2015.09.042
  • He JY, Wang H, Huang HL, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 2016;102:187–196. doi:10.1016/j.actamat.2015.08.076
  • Chen Y, Deng HW, Xie ZM, et al. Tailoring microstructures and tensile properties of a precipitation-strengthened (FeCoNi)94Ti6 medium-entropy alloy. J Alloys Compd. 2020;828:154457. doi:10.1016/j.jallcom.2020.154457
  • Zhang C, Zhu C, Cao P, et al. Aged metastable high-entropy alloys with heterogeneous lamella structure for superior strength-ductility synergy. Acta Mater. 2020;199:602–612. doi:10.1016/j.actamat.2020.08.043
  • Gwalani B, Dasari S, Sharma A, et al. High density of strong yet deformable intermetallic nanorods leads to an excellent room temperature strength-ductility combination in a high entropy alloy. Acta Mater. 2021;219:117234. doi:10.1016/j.actamat.2021.117234
  • Han L, Rao Z, Souza Filho IR, et al. Ultrastrong and ductile soft magnetic high-entropy alloys via coherent ordered nanoprecipitates. Adv Mater. 2021;33:2102139.
  • Yang L, Liang D, Cheng Z, et al. Simultaneous enhancement of strength and ductility via microband formation and nanotwinning in an L12-strengthened alloy. Fundam Res. 2022. doi:10.1016/j.fmre.2022.05.024
  • Han L, Maccari F, Souza Filho IR, et al. A mechanically strong and ductile soft magnet with extremely low coercivity. Nature. 2022;608:310–316. doi:10.1038/s41586-022-04935-3
  • Lu Y, Zhang K, Zhao B, et al. Balanced mechanical properties of Al0.3CoCrFeNiTix high-entropy alloys by tailoring Ti content and heat treatment. Mater Sci Eng A. 2023;866:144677. doi:10.1016/j.msea.2023.144677
  • Zhang J, Zhao Z, Li Q, et al. Unveiling the unique bifunctionality of L1 2 -structured nanoprecipitates in a FeCoNiAlTi-type high-entropy alloy. Adv Powder Mater. 2023;2:100113. doi:10.1016/j.apmate.2023.100113
  • Fan J, Ji X, Fu L, et al. Achieving exceptional strength-ductility synergy in a complex-concentrated alloy via architected heterogeneous grains and nano-sized precipitates. Int J Plast. 2022;157:103398. doi:10.1016/j.ijplas.2022.103398
  • Yang T, Zhao YL, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science. 2018;362:933–937. doi:10.1126/science.aas8815
  • Han B, Wei J, Tong Y, et al. Composition evolution of gamma prime nanoparticles in the Ti-doped CoFeCrNi high entropy alloy. Scr Mater. 2018;148:42–46. doi:10.1016/j.scriptamat.2018.01.025
  • Kuo CM, Tsai CW. Effect of cellular structure on the mechanical property of Al0.2Co1.5CrFeNi1.5Ti0.3 high-entropy alloy. Mater Chem Phys. 2018;210:103–110. doi:10.1016/j.matchemphys.2017.10.064
  • Gwalani B, Gorsse S, Soni V, et al. Role of copper on L12 precipitation strengthened fcc based high entropy alloy. Materialia. 2019;6:100282. doi:10.1016/j.mtla.2019.100282
  • Yang T, Zhao YL, Fan L, et al. Control of nanoscale precipitation and elimination of intermediate-temperature embrittlement in multicomponent high-entropy alloys. Acta Mater. 2020;189:47–59. doi:10.1016/j.actamat.2020.02.059
  • Zhao YL, Yang T, Li YR, et al. Superior high-temperature properties and deformation-induced planar faults in a novel L12-strengthened high-entropy alloy. Acta Mater. 2020;188:517–527. doi:10.1016/j.actamat.2020.02.028
  • Li Z, Fu L, Peng J, et al. Improving mechanical properties of an FCC high-entropy alloy by γ′ and B2 precipitates strengthening. Mater Charact. 2020;159:109989. doi:10.1016/j.matchar.2019.109989
  • Adil S, Suraj MV, Pillari LK, et al. On the effect of Fe in L12 strengthened Al–Co–Cr–Fe–Ni–Ti complex concentrated alloy. Materialia. 2020;14:100909. doi:10.1016/j.mtla.2020.100909
  • Li W, Xie D, Li D, et al. Mechanical behavior of high-entropy alloys. Prog Mater Sci. 2021;118:100777. doi:10.1016/j.pmatsci.2021.100777
  • Zuo TT, Ren SB, Liaw PK, et al. Processing effects on the magnetic and mechanical properties of FeCoNiAl0.2Si0.2 high entropy alloy. Int J Miner Metall Mater. 2013;20:549–555. doi:10.1007/s12613-013-0764-x
  • Li Z, Wang C, Yu L, et al. Magnetic properties and microstructure of FeCoNi(CuAl)0.8Snx (0 ≤ x ≤ 0.10) high-entropy alloys. Entropy. 2018;20:872. doi:10.3390/e20110872
  • Yang C, Zhang J, Li M, et al. Soft-Magnetic high-entropy AlCoFeMnNi alloys with dual-phase microstructures induced by annealing. Acta Metall Sin (Engl Lett). 2020;33:1124–1134. doi:10.1007/s40195-020-01086-0
  • Bazioti C, Løvvik OM, Poulia A, et al. Probing the structural evolution and its impact on magnetic properties of FeCoNi(AlMn)x high-entropy alloy at the nanoscale. J Alloys Compd. 2022;910:164724. doi:10.1016/j.jallcom.2022.164724
  • Sathiyamoorthi P, Kim HS. High-entropy alloys with heterogeneous microstructure: processing and mechanical properties. Prog Mater Sci. 2022;123:100709. doi:10.1016/j.pmatsci.2020.100709
  • George EP, Raabe D, Ritchie RO. High-entropy alloys. Nat Rev Mater. 2019;4:515–534. doi:10.1038/s41578-019-0121-4
  • Zhu Y, Ameyama K, Anderson PM, et al. Heterostructured materials: superior properties from hetero-zone interaction. Mater Res Lett. 2021;9:1–31. doi:10.1080/21663831.2020.1796836
  • Zhu Y, Wu X. Heterostructured materials. Prog Mater Sci. 2023;131:101019. doi:10.1016/j.pmatsci.2022.101019
  • Zhang C, Zhu C, Harrington T, et al. Design of non-equiatomic high entropy alloys with heterogeneous lamella structure towards strength-ductility synergy. Scr Mater. 2018;154:78–82. doi:10.1016/j.scriptamat.2018.05.020
  • Zhang C, MacDonald BE, Guo F, et al. Cold-workable refractory complex concentrated alloys with tunable microstructure and good room-temperature tensile behavior. Scr Mater. 2020;188:16–20. doi:10.1016/j.scriptamat.2020.07.006
  • Kim YK, Lee BJ, Hong SK, et al. Strengthening and fracture of deformation-processed dual fcc-phase CoCrFeCuNi and CoCrFeCu1.71Ni high entropy alloys. Mater Sci Eng A. 2020;781:139241. doi:10.1016/j.msea.2020.139241
  • Zhang C, Zhu C, Vecchio K. Non-equiatomic FeNiCoAl-based high entropy alloys with multiscale heterogeneous lamella structure for strength and ductility. Mater Sci Eng A. 2019;743:361–371. doi:10.1016/j.msea.2018.11.073
  • Shi P, Ren W, Zheng T, et al. Enhanced strength–ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae. Nat Commun. 2019;10:1–8. doi:10.1038/s41467-018-07882-8
  • Liu X, Zhang C, Zhu C, et al. Creating heterogeneous lamella structure in a multiphase Al-Cr-Fe-Co-Ni complex concentrated alloy. Mater Sci Eng A. 2022;858:144150. doi:10.1016/j.msea.2022.144150
  • Zhang C, Wang H, Wang X, et al. Strong and ductile refractory high-entropy alloys with super formability. Acta Mater. 2023;245:118602. doi:10.1016/j.actamat.2022.118602
  • Wu X, Yang M, Yuan F, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc Natl Acad Sci U S A. 2015;112:14501–14505. doi:10.1073/pnas.1517193112
  • Shin S, Zhu C, Zhang C, et al. Extraordinary strength-ductility synergy in a heterogeneous-structured β -Ti alloy through microstructural optimization. Mater Res Lett. 2019;7:467–473. doi:10.1080/21663831.2019.1652856
  • Yang M, Pan Y, Yuan F, et al. Back stress strengthening and strain hardening in gradient structure. Mater Res Lett. 2016;4:145–151. doi:10.1080/21663831.2016.1153004
  • Zhang Y, Zuo T, Cheng Y, et al. High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci Rep. 2013;3:1–7. doi:10.1038/srep01455
  • Li Z, Xu H, Gu Y, et al. Correlation between the magnetic properties and phase constitution of FeCoNi(CuAl)0.8Gax (0 ≤ x ≤ 0.08) high-entropy alloys. J Alloys Compd. 2018;746:285–291. doi:10.1016/j.jallcom.2018.02.189
  • Lu T, He T, Zhao P, et al. Fine tuning in-sync the mechanical and magnetic properties of FeCoNiAl0.25Mn0.25 high-entropy alloy through cold rolling and annealing treatment. J Mater Process Technol. 2021;289:116945. doi:10.1016/j.jmatprotec.2020
  • Lou L, Li Y, Li X, et al. Directional magnetization reversal enables ultrahigh energy density in gradient nanostructures. Adv Mater. 2021;33:2102800. doi:10.1002/adma.202102800
  • Liu X, Vecchio K. Processing, microstructure evolution and mechanical property improvements of an Al–V–Cr–Mn–Fe–Ni CCA with an as-cast BCC/B2 coherent nanostructure. Mater Sci Eng A. 2022;852:143698. doi:10.1016/j.msea.2022.143698