1,970
Views
0
CrossRef citations to date
0
Altmetric
Original Reports

Heterostructured titanium composites with superior strength-ductility synergy via controllable bimodal grains and <c+a> dislocation activity

, , , , , , , , & show all
Pages 863-871 | Received 10 Jul 2023, Published online: 05 Sep 2023

References

  • Wu H, Fan G. An overview of tailoring strain delocalization for strength-ductility synergy. Prog Mater Sci. 2020;113:100675. doi:10.1016/j.pmatsci.2020.100675
  • Jiang J, Chen Z, Ma H, et al. Strength-ductility synergy in heterogeneous-structured metals and alloys. Matter. 2022;5(8):2430–2433. doi:10.1016/j.matt.2022.05.023
  • Ma E, Zhu T. Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals. Mater Today. 2017;20(6):323–331. doi:10.1016/j.mattod.2017.02.003
  • Wang YF, Huang CX, Fang XT, et al. Hetero-deformation induced (HDI) hardening does not increase linearly with strain gradient. Scr Mater. 2020;174:19–23. doi:10.1016/j.scriptamat.2019.08.022
  • Ma E, Wu X. Tailoring heterogeneities in high-entropy alloys to promote strength-ductility synergy. Nat Commun. 2019 Dec 9;10(1):5623. doi:10.1038/s41467-019-13311-1
  • Zhu YT, Ameyama K, Anderson PM, et al. Heterostructured materials: superior properties from hetero-zone interaction. Mater Res Lett. 2021;9(1):1–31. doi:10.1080/21663831.2020.1796836
  • Li X, Lu L, Li J, et al. Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys. Nature Rev Mater. 2020;5(9):706–723. doi:10.1038/s41578-020-0212-2
  • Li J, Zhang Q, Huang R, et al. Towards understanding the structure–property relationships of heterogeneous-structured materials. Scr Mater. 2020;186:304–311. doi:10.1016/j.scriptamat.2020.05.013
  • Zhu YT, Wu XL. Heterostructured materials. Prog Mater Sci. 2023;131:101019. doi:10.1016/j.pmatsci.2022.101019
  • Li G, Jiang J, Ma H, et al. Superior strength–ductility synergy in three-dimensional heterogeneous-nanostructured metals. Acta Mater. 2023;256:119143. doi:10.1016/j.actamat.2023.119143
  • Li SP, Wang XY, Le JW, et al. Towards high strengthening efficiency by in-situ planting nano-TiB networks into titanium matrix composites. Compos Part B: Eng. 2022;245:110169. doi:10.1016/j.compositesb.2022.110169
  • Yang MX, Pan Y, Yuan FP, et al. Back stress strengthening and strain hardening in gradient structure. Mater Res Lett. 2016;4(3):145–151. doi:10.1080/21663831.2016.1153004
  • Shi P, Ren W, Zheng T, et al. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae. Nat Commun. 2019 Jan 30;10(1):489. doi:10.1038/s41467-019-08460-2
  • Li J, Lu W, Chen S, et al. Revealing extra strengthening and strain hardening in heterogeneous two-phase nanostructures. Int J Plast. 2020;126:102626. doi:10.1016/j.ijplas.2019.11.005
  • Sumin S, Chaoyi Z, Cheng Z, et al. Extraordinary strength-ductility synergy in a heterogeneous-structured β -Ti alloy through microstructural optimization. Mater Res Lett. 2019;7(11):467–473. doi:10.1080/21663831.2019.1652856
  • He F, Yang Z, Liu S, et al. Strain partitioning enables excellent tensile ductility in precipitated heterogeneous high-entropy alloys with gigapascal yield strength. Int J Plast. 2021;144:103022. doi:10.1016/j.ijplas.2021.103022
  • Li Z, Kang Q, Wang G, et al. Microstructure evolution during hot-packed rolling and mechanical properties anisotropy of as-rolled network-structured TiBw/TA15 composites. Mater Sci Eng A. 2022;849:143518. doi:10.1016/j.msea.2022.143518
  • Wang S, Huang L, Liu B, et al. Microstructure and mechanical properties of Ti6Al4V based laminated composites at various rolling reductions. Compos Commun. 2022;33:101212. doi:10.1016/j.coco.2022.101212
  • Ge YX, Zhang HM, Cheng XW, et al. Towards high performance in Ti-based composite through manipulating nickel coatings on graphene reinforcement. J Alloys Compd. 2022;893:162240. doi:10.1016/j.jallcom.2021.162240
  • Mu XN, Cai HN, Zhang HM, et al. Uniform dispersion and interface analysis of nickel coated graphene nanoflakes/ pure titanium matrix composites. Carbon. 2018;137:146–155. doi:10.1016/j.carbon.2018.05.013
  • Mu XN, Cai HN, Zhang HM, et al. Interface evolution and superior tensile properties of multi-layer graphene reinforced pure Ti matrix composite. Mater Des. 2018;140:431–441. doi:10.1016/j.matdes.2017.12.016
  • Mu XN, Zhang HM, Cai HN, et al. Microstructure evolution and superior tensile properties of low content graphene nanoplatelets reinforced pure Ti matrix composites. Mater Sci Eng A. 2017;687:164–174. doi:10.1016/j.msea.2017.01.072
  • Xu S, Lu T, Qiu J, et al. Microstructure and mechanical properties of Ti-Ta based composites enhanced by in-situ formation of TiC particles. Mater Charact. 2021;178:111241. doi:10.1016/j.matchar.2021.111241
  • Zhang C, Li X, Zhang S, et al. Effects of direct rolling deformation on the microstructure and tensile properties of the 2.5 vol% (TiB w +TiC p )/Ti composites. Mater Sci Eng A. 2017;684:645–651. doi:10.1016/j.msea.2016.12.113
  • Zhou Y, Yang F, Chen C, et al. Mechanical property and microstructure of in-situ TiB/Ti composites via vacuum sintering and hot rolling. J Alloys Compd. 2022;911:165042. doi:10.1016/j.jallcom.2022.165042
  • Zheng Z, Kong F, Wang X, et al. Microstructure evolution, mechanical properties and strengthening mechanism of titanium matrix composite sheets. Mater Sci Eng A. 2022;860:144256. doi:10.1016/j.msea.2022.144256
  • Li H, Zong H, Li S, et al. Uniting tensile ductility with ultrahigh strength via composition undulation. Nature. 2022 Apr;604(7905):273–279. doi:10.1038/s41586-022-04459-w
  • Fu W, Dang PF, Guo SW, et al. Heterogeneous fiberous structured Mg-Zn-Zr alloy with superior strength-ductility synergy. J Mater Sci Technol. 2023 Jan 20;134:67–80. doi:10.1016/j.jmst.2022.06.021
  • Zhang Z, Zhang JH, Wang WK, et al. Unveiling the deformation mechanism of highly deformable magnesium alloy with heterogeneous grains. Scr Mater. 2022;221:114963. doi:10.1016/j.scriptamat.2022.114963
  • Dong Z, Ma Z, Yu L, et al. Achieving high strength and ductility in ODS-W alloy by employing oxide@W core-shell nanopowder as precursor. Nat Commun. 2021 Aug 20;12(1):5052. doi:10.1038/s41467-021-25283-2
  • Wei Z, Han Y, Li S, et al. Interfacial modification strategy to break through the strength and ductility trade-off in multi-walled carbon nanotubes reinforced titanium matrix composites. Mater Sci Eng A. 2023;880:145284. doi:10.1016/j.msea.2023.145284
  • Fang XT, He GZ, Zheng C, et al. Effect of heterostructure and hetero-deformation induced hardening on the strength and ductility of brass. Acta Mater. 2020;186:644–655. doi:10.1016/j.actamat.2020.01.037
  • Wang T, Zha M, Du C, et al. High strength and high ductility achieved in a heterogeneous lamella-structured magnesium alloy. Mater Res Lett. 2023;11(3):187–195. doi:10.1080/21663831.2022.2133976
  • Gong J, Wilkinson AJ. Anisotropy in the plastic flow properties of single-crystal α titanium determined from micro-cantilever beams. Acta Mater. 2009;57(19):5693–5705. doi:10.1016/j.actamat.2009.07.064
  • Gu L, Meng A, Chen X, et al. Simultaneously enhancing strength and ductility of HCP titanium via multi-modal grain induced extra <c+a> dislocation hardening. Acta Mater. 2023;252:118949. doi:10.1016/j.actamat.2023.118949
  • Chen J, Han Y, Li S, et al. Evading the strength and ductility trade-off dilemma in titanium matrix composites through designing bimodal grains and micro-nano reinforcements. Scr Mater. 2023;235:115625. doi:10.1016/j.scriptamat.2023.115625
  • Sun H, Saba F, Fan GL, et al. Micro/nano-reinforcements in bimodal-grained matrix: a heterostructure strategy for toughening particulate reinforced metal matrix composites. Scr Mater. 2022;217:114774. doi:10.1016/j.scriptamat.2022.114774
  • Zhao YH, Liao XZ, Cheng S, et al. Simultaneously increasing the ductility and strength of nanostructured alloys. Adv Mater. 2006;18(17):2280–2283. doi:10.1002/adma.200600310
  • Liu BY, Liu F, Yang N, et al. Large plasticity in magnesium mediated by pyramidal dislocations. Science. 2019 Jul 5;365(6448):73–75. doi:10.1126/science.aaw2843
  • Chong Y, Bhattacharjee T, Tian YZ, et al. Deformation mechanism of bimodal microstructure in Ti-6Al-4V alloy: The effects of intercritical annealing temperature and constituent hardness. J Mater Sci Technol. 2021;71:138–151. doi:10.1016/j.jmst.2020.08.057
  • Qin S, Yang MX, Jiang P, et al. Designing structures with combined gradients of grain size and precipitation in high entropy alloys for simultaneous improvement of strength and ductility. Acta Mater. 2022;230:117847. doi:10.1016/j.actamat.2022.117847
  • Hu J, Li XY, Zhang ZM, et al. Overcoming the strength-ductility trade-off in metastable dual-phase heterogeneous structures using variable temperature rolling and annealing. Mater Res Lett. 2023 Aug 3;11(8):648–654. doi:10.1080/21663831.2023.2209596
  • Chou TH, Li WP, Chang HW, et al. Quantitative analysis of hetero-deformation induced strengthening in heterogeneous grain structure. Int J Plast. 2022;159:103482. doi:10.1016/j.ijplas.2022.103482
  • Wang Y, Zhu Y, Yu Z, et al. Hetero-zone boundary affected region: a primary microstructural factor controlling extra work hardening in heterostructure. Acta Mater. 2022;241:118395. doi:10.1016/j.actamat.2022.118395