862
Views
0
CrossRef citations to date
0
Altmetric
Original Reports

A method for increasing the supersolvus critical strain for recrystallization in single-crystal superalloys

, ORCID Icon, &
Pages 856-862 | Received 24 Jul 2023, Published online: 04 Sep 2023

References

  • Pollock TM. Alloy design for aircraft engines. Nat Mater. 2016;15:809–815. doi:10.1038/nmat4709
  • Bürgel R, Portella PD, Preuhs J. Recrystallization in single crystal of nickel base superalloy. In: Pollock TM, Kissinger RD, editor. superalloys 2000. Warrendale, PA: TMS; 2000. p. 229–238.
  • Mathur HN, Panwisawas C, Jones CN, et al. Nucleation of recrystallisation in castings of single crystal Ni-based superalloys. Acta Mater. 2017;129:112–123. doi:10.1016/j.actamat.2017.02.058
  • Panwisawas C, Mathur H, Gebelin JC, et al. Prediction of recrystallization in investment cast single-crystal superalloys. Acta Mater. 2013;61:51–66. doi:10.1016/j.actamat.2012.09.013
  • Xie G, Wang L, Zhang J, et al. Orientational dependence of recrystallization in an Ni-base single-crystal superalloy. Scr Mater. 2012;66:378–381. doi:10.1016/j.scriptamat.2011.11.037
  • Zambaldi C, Roters F, Raabe D, et al. Modeling and experiments on the indentation deformation and recrystallization of a single-crystal nickel-base superalloy. Mater Sci Eng A. 2007;454–455:433–440.
  • Koff BL. Gas turbine technology evolution: A designer’s perspective. J Propuls Power. 2004;20:577–595. doi:10.2514/1.4361
  • Xie G, Zhang J, Lou LH. Effect of cyclic recovery heat treatment on surface recrystallization of a directionally solidified superalloy. Prog Nat Sci Mater Int. 2011;21:491–495. doi:10.1016/S1002-0071(12)60088-4
  • Li Z, Xu Q, Xiong J, et al. Plastic deformation and recrystallization of a Ni-based single crystal superalloy. Mater Sci Forum. 2016;850:47–55. doi:10.4028/www.scientific.net/MSF.850.47
  • Panwisawas C, Mathur H, Gebelin JC, et al. Prediction of plastic strain for recrystallisation during investment casting of single crystal superalloys. In: Huron E, Reed RC, Hardy M, editor. Superalloys 2012. Warrendale, PA: TMS; 2012. p. 547–556.
  • Chen K, Huang R, Li Y, et al. Rafting-Enabled recovery avoids recrystallization in 3D-printing-repaired single-crystal superalloys. Adv Mater. 2020;32:1907164.
  • Shi D, Sui T, Li Z, et al. An orientation-dependent creep life evaluation method for nickel-based single crystal superalloys. Chinese J Aeronaut. 2022;35:238–249. doi:10.1016/j.cja.2021.03.003
  • Li Y, Wang L, Zhao S, et al. Creep anisotropy of a 3rd generation nickel-base single crystal superalloy in the vicinity of [001] orientation. Mater Sci Eng A. 2022;848:143479. doi:10.1016/j.msea.2022.143479
  • Norfleet DM, Dimiduk DM, Polasik SJ, et al. Dislocation structures and their relationship to strength in deformed nickel microcrystals. Acta Mater. 2008;56:2988–3001. doi:10.1016/j.actamat.2008.02.046
  • Nabarro FRN. Rafting in superalloys. Metall Mater Trans A Phys Metall Mater Sci. 1996;27:513–530. doi:10.1007/BF02648942
  • Borouni A, Kermanpur A. Effect of Ta/W ratio on microstructural features and segregation patterns of the single crystal PWA1483 Ni-based superalloy. J Mater Eng Perform. 2020;29:7567–7586. doi:10.1007/s11665-020-05189-8
  • Kontis P, Li Z, Collins DM, et al. The effect of chromium and cobalt segregation at dislocations on nickel-based superalloys. Scr Mater. 2018;145:76–80. doi:10.1016/j.scriptamat.2017.10.005
  • Giraud R, Hervier Z, Cormier J, et al. Strain effect on the γ′ dissolution at high temperatures of a nickel-based single crystal superalloy. Metall Mater Trans A Phys Metall Mater Sci. 2013;44:131–146. doi:10.1007/s11661-012-1397-9
  • Pantleon W. Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction. Scr Mater. 2008;58:994–997. doi:10.1016/j.scriptamat.2008.01.050
  • Lin S, Shen H, Zhou G, et al. A new rejuvenation heat treatment of crept Ni-based superalloy single crystals. IOP Conf Ser Mater Sci Eng. 2022;1249:012017.