733
Views
0
CrossRef citations to date
0
Altmetric
Original Reports

Dual crack inhibition mechanism of nano-TiC in steel–copper heterostructures formed by laser powder bed fusion

, , &
Pages 949-956 | Received 31 Aug 2023, Published online: 17 Oct 2023

References

  • Kar J, Roy SK, Roy GG. Effect of beam oscillation on electron beam welding of copper with AISI-304 stainless steel. J Mater Process Technol. 2016;233:174–185. doi:10.1016/j.jmatprotec.2016.03.001
  • Zhang H, Jiao KX, Zhang JL, et al. Experimental and numerical investigations of interface characteristics of copper/steel composite prepared by explosive welding. Mater Des. 2018;154:140–152. doi:10.1016/j.matdes.2018.05.027
  • Bai Y, Zhang J, Zhao C, et al. Dual interfacial characterization and property in multi-material selective laser melting of 316L stainless steel and C52400 copper alloy. Mater Charact. 2020;167:110489. doi:10.1016/j.matchar.2020.110489
  • Zhang X, Pan T, Chen Y, et al. Additive manufacturing of copper-stainless steel hybrid components using laser-aided directed energy deposition. J Mater Sci Technol. 2021;80:100–116. doi:10.1016/j.jmst.2020.11.048
  • Masahashi N, Semboshi S, Watanabe K, et al. Solid-state bonding of alloy-designed Cu–Zn brass and steel associated with phase transformation by spark plasma sintering. J Mater Sci. 2013;48(17):5801–5809. doi:10.1007/s10853-013-7372-z
  • Gladkovsky SV, Kuteneva SV, Sergeev SN. Microstructure and mechanical properties of sandwich copper/steel composites produced by explosive welding. Mater Charact. 2019;154:294–303. doi:10.1016/j.matchar.2019.06.008
  • Jie J, Liu C, Wang S, et al. Characterisation of steel/nickel bronze clad strips prepared by continuous solid/liquid bonding method. Mater Sci Technol 2019;35(15):1840–1847. doi:10.1080/02670836.2019.1651015
  • Tang YT, Panwisawas C, Ghoussoub JN, et al. Alloys-by-design: application to new superalloys for additive manufacturing. Acta Mater. 2021;202:417–436. doi:10.1016/j.actamat.2020.09.023
  • Pellizzari M, AlMangour B, Benedetti M, et al. Effects of building direction and defect sensitivity on the fatigue behavior of additively manufactured H13 tool steel. Theor Appl Fract Mech. 2020;108:102634. doi:10.1016/j.tafmec.2020.102634
  • Fu J, Li H, Song X, et al. Multi-scale defects in powder-based additively manufactured metals and alloys. J Mater Sci Technol. 2022;122:165–199. doi:10.1016/j.jmst.2022.02.015
  • Deirmina F, AlMangour B, Grzesiak D, et al. H13–partially stabilized zirconia nanocomposites fabricated by high-energy mechanical milling and selective laser melting. Mater Des. 2018;146:286–297. doi:10.1016/j.matdes.2018.03.017
  • Liu ZY, Zhao DD, Wang P, et al. Additive manufacturing of metals: microstructure evolution and multistage control. J Mater Sci Technol. 2022;100:224–236. doi:10.1016/j.jmst.2021.06.011
  • Chauvet E, Kontis P, Jägle EA, et al. Hot cracking mechanism affecting a non-weldable Ni-based superalloy produced by selective electron beam melting. Acta Mater. 2018;142:82–94. doi:10.1016/j.actamat.2017.09.047
  • Lu N, Lei Z, Hu K, et al. Hot cracking behavior and mechanism of a third-generation Ni-based single-crystal superalloy during directed energy deposition. Addit Manuf. 2020;34:101228. doi:10.1016/j.addma.2020.101228
  • Zhou Z, Huang L, Shang Y, et al. Causes analysis on cracks in nickel-based single crystal superalloy fabricated by laser powder deposition additive manufacturing. Mater Des. 2018;160:1238–1249. doi:10.1016/j.matdes.2018.10.042
  • Han Q, Mertens R, Montero-Sistiaga ML, et al. Laser powder bed fusion of Hastelloy X: effects of hot isostatic pressing and the hot cracking mechanism. Mater Sci Eng A. 2018;732:228–239. doi:10.1016/j.msea.2018.07.008
  • Zhao Y, Ma Z, Yu L, et al. New alloy design approach to inhibiting hot cracking in laser additive manufactured nickel-based superalloys. Acta Mater. 2023;247:118736. doi:10.1016/j.actamat.2023.118736
  • Martin JH, Yahata BD, Hundley JM, et al. 3D printing of high-strength aluminium alloys. Nature. 2017;549(7672):365–369. doi:10.1038/nature23894
  • Tan Q, Zhang J, Sun Q, et al. Inoculation treatment of an additively manufactured 2024 aluminium alloy with titanium nanoparticles. Acta Mater. 2020;196:1–16. doi:10.1016/j.actamat.2020.06.026
  • Li R, Wang M, Li Z, et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: crack-inhibiting and multiple strengthening mechanisms. Acta Mater. 2020;193:83–98. doi:10.1016/j.actamat.2020.03.060
  • AlMangour B, Baek M-S, Grzesiak D, et al. Strengthening of stainless steel by titanium carbide addition and grain refinement during selective laser melting. Mater Sci Eng A. 2018;712:812–818. doi:10.1016/j.msea.2017.11.126
  • Zhai W, Zhou W, Nai SML. Grain refinement and strengthening of 316L stainless steel through addition of TiC nanoparticles and selective laser melting. Mater Sci Eng A. 2022;832:142460. doi:10.1016/j.msea.2021.142460
  • Wang S, Chen C, Ju J, et al. Suppression of LME cracks in Sn bronze-steel system based on multi-material additive manufacturing. Mater Lett. 2023;335:133775. doi:10.1016/j.matlet.2022.133775
  • Zhai W, Zhu Z, Zhou W, et al. Selective laser melting of dispersed TiC particles strengthened 316L stainless steel. Compos B Eng. 2020;199:108291. doi:10.1016/j.compositesb.2020.108291
  • AlMangour B, Grzesiak D, Borkar T, et al. Densification behavior, microstructural evolution, and mechanical properties of TiC/316L stainless steel nanocomposites fabricated by selective laser melting. Mater Des. 2018;138:119–128. doi:10.1016/j.matdes.2017.10.039
  • Biedunkiewicz A, Biedunkiewicz W, Figiel P, et al. Preparation of stainless steel-TiC composite by selective laser melting. Chem Listy. 2011;105:773–774.8.
  • Li N, Wang T, Zhang L, et al. Crack initiation mechanism of laser powder bed fusion additive manufactured Al-Zn-Mg-Cu alloy. Mater Charact. 2023;195:112415. doi:10.1016/j.matchar.2022.112415
  • Hu Z, Yang Z, Du Z, et al. Effect of scanning strategy on the anisotropy in microstructure and properties of Cu-Cr-Zr alloy manufactured by laser powder bed fusion. J Alloy Compd. 2022;920:165957. doi:10.1016/j.jallcom.2022.165957
  • Wang N, Mokadem S, Rappaz M, et al. Solidification cracking of superalloy single- and bi-crystals. Acta Mater. 2004;52(11):3173–3182. doi:10.1016/j.actamat.2004.03.047
  • Liu Y, Zhang J, Tan Q, et al. Additive manufacturing of high strength copper alloy with heterogeneous grain structure through laser powder bed fusion. Acta Mater. 2021;220:10. doi:10.1016/j.actamat.2021.117311
  • Huang J, Li W, He J, et al. Dual heterogeneous structure facilitating an excellent strength-ductility combination in an additively manufactured multi-principal-element alloy. Mater Res Lett. 2022;10:(9):575–584. doi:10.1080/21663831.2022.2067790
  • Deng J, Chen C, Liu X, et al. A high-strength heat-resistant Al5.7Ni eutectic alloy with spherical Al3Ni nano-particles by selective laser melting. Scr Mater. 2021;203:(4):114034. doi:10.1016/j.scriptamat.2021.114034
  • Zhang X, Chen H, Xu L, et al. Cracking mechanism and susceptibility of laser melting deposited Inconel 738 superalloy. Mater Des. 2019;183:108105. doi:10.1016/j.matdes.2019.108105
  • Mandal V, Tripathi P, Kumar A, et al. A study on selective laser melting (SLM) of TiC and B4C reinforced IN718 metal matrix composites (MMCs). J Alloys Compd. 2022;901:163527. doi:10.1016/j.jallcom.2021.163527
  • Zhao Z, Li J, Bai P, et al. Microstructure and mechanical properties of TiC-reinforced 316L stainless steel composites fabricated using selective laser melting. Metals. 2019;9:(2):267. doi:10.3390/met9020267
  • Vilanova M, Taboada MC, Martinez-Amesti A, et al. Influence of minor alloying element additions on the crack susceptibility of a nickel based superalloy manufactured by LPBF. Materials. 2021;14(19):5702. doi:10.3390/ma14195702
  • Fereiduni E, Yakout M, Elbestawi M. Additive manufacturing of emerging materials. In: Process-structure-property relationships in additively manufactured metal matrix composites. Cambridge.: Springer; 2019. p. 111–177.